1.西南交通大学 机械工程学院,四川 成都 610031
2.中国铁路成都局集团有限公司,四川 成都 610082
徐冬冬(1998—),女,硕士研究生,研究方向为车辆系统动力学;E-mail:xudongdong@my.swjtu.edu.cn
扫 描 看 全 文
徐冬冬, 杨九河, 丁军君. 高速列车车轮多边形动力学试验与仿真研究[J]. 机车电传动, 2021,0(6):42-48.
Dongdong XU, Jiuhe YANG, Junjun DING. Dynamic Test and Simulation of High-speed Train Polygonal Wheels[J]. Electric Drive for Locomotives, 2021,0(6):42-48.
徐冬冬, 杨九河, 丁军君. 高速列车车轮多边形动力学试验与仿真研究[J]. 机车电传动, 2021,0(6):42-48. DOI: 10.13890/j.issn.1000-128x.2021.06.005.
Dongdong XU, Jiuhe YANG, Junjun DING. Dynamic Test and Simulation of High-speed Train Polygonal Wheels[J]. Electric Drive for Locomotives, 2021,0(6):42-48. DOI: 10.13890/j.issn.1000-128x.2021.06.005.
国内某列动车组的车轮存在18阶和19阶的车轮多边形,为研究车轮多边形对车辆振动行为的影响,对该车进行了线路跟踪试验,对关键部件的振动加速度进行了测量和分析。以线路跟踪试验条件为基础,采用SIMPACK建立动力学仿真模型,输入实测数据,从时域和频域方面对比线路试验与动力学仿真获得的各个关键部件的振动数据,并比对结果差异,分析产生的原因。结果表明:构架垂向加速度的线路试验数据略大于仿真数据,轴箱垂向加速度总体差距较小;仿真和线路试验构架振动能量均集中在540 Hz左右,仿真试验轴箱振动能量集中在527 Hz左右,线路试验轴箱振动能量集中在542 Hz左右,均接近由19阶车轮多边形引起的振动频率(547.81 Hz),且两者振动能量起伏趋势大体相似。说明仿真试验基本可以还原线路试验,且能较为准确地反映车轮多边形对车辆振动行为的影响。
It is found that there are 18-19 order wheel polygons in the wheels of an EMU. In order to study the in fluence of wheel polygons on the vibration behavior of the vehicle, the line test of the vehicle was carried out, and the vibration acceleration of the key components was measured and analyzed. Based on the line tracking test conditions, the SIMPACK was used to establish the dynamic simulation model, and the measured wheel polygon data was used as the input. The vibration data of each key component obtained by the line experiment and the dynamic simulation was compared from the time domain and frequency domain, and the reasons for the difference of the comparison results were analyzed. The results showed that the line test data of the vertical acceleration of the frame were slightly larger than the simulation data, and the overall difference of the vertical acceleration of the axle box was small. The vibration energy of the frames in the line test and simulation test was concentrated at about 540 Hz, the vibration energy of the axle box in the simulation test was concentrated at 527 Hz, and the vibration energy of the axle box in the line test was concentrated at 542 Hz, which was close to the frequency caused by the 19th-order wheel polygon (547.81 Hz), and the fluctuation trend of the vibration energy of the two were roughly similar. The simulation test can basically restore the line test and accurately re flect the in fluence of wheel polygon on vehicle vibration behavior.
高速列车动车组车轮多边形线路试验仿真
high-speed trainEMUswheel polygonline testsimulation
赵晓男, 陈光雄, 崔晓璐, 等. 高速列车车轮多边形磨耗的形成机理及影响因素探究[J]. 表面技术, 2018, 47(8): 8-13.
ZHAO Xiaonan, CHEN Guangxiong, CUI Xiaolu, et al. Formation mechanism and influencing factors of the polygonal wear of high-speed train wheels[J]. Surface Technology, 2018, 47(8): 8-13.
邹航宇, 张卫华, 王志伟. 车轮多边形化对高速列车齿轮箱体动态响应的影响[J]. 机车电传动, 2017(6): 52-56.
ZOU Hangyu, ZHANG Weihua, WANG Zhiwei. In fluence of wheel polygonization on dynamic response of gearbox housing of high-speed train[J]. Electric Drive for Locomotives, 2017(6): 52-56.
胡静涛, 杨九河, 丁军君, 等. 车轮多边形对米轨机车动力学性能影响的研究[J]. 机车电传动, 2019(2): 44-48.
HU Jingtao, YANG Jiuhe, DING Junjun, et al. In fluence of polygon wheel on dynamic performance of meter-gauge locomotive[J]. Electric Drive for Locomotives, 2019(2): 44-48.
罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都: 西南交通大学出版社, 2018.
LUO Ren, SHI Huailong. Dynamics of railway vehicle systems and application[M]. Chengdu: Southwest Jiaotong University Press, 2018.
FRÖHLING R, SPANGENBERG U, REITMANN E. Root cause analysis of locomotive wheel tread polygonisation[J]. Wear, 2019(432/433): 102911.
YANG Y F, LING L, LIU P F, et al. Experimental investigation of essential feature of polygonal wear of locomotive wheels[J]. Measurement, 2020(166): 108199.
WANG Z W, ALLEN P, MEI G M, et al. In fluence of wheel-polygonal wear on the dynamic forces within the axle-box bearing of a high-speed train[J]. Vehicle System Dynamics, 2020, 58(9): 1385-1406.
PENG B, IWNICKI S, SHACKLETON P, et al. The influence of wheelset flexibility on polygonal wear of locomotive wheels[J]. Wear, 2019(432/433): 102917.
FU B, BRUNI S, LUO S H. Study on wheel polygonization of a metro vehicle based on polygonal wear simulation[J]. Wear, 2019(438/439): 203071.
WU B W, QIAO Q F, CHEN G X, et al. Effect of the unstable vibration of the disc brake system of high-speed trains on wheel polygonalization[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(1): 80-95.
宋颖. 高速车轮失圆对轮轨动力作用的影响及其监测方法研究[D]. 北京: 北京交通大学, 2010.
SONG Ying. Study on influence of out-of-round high-speed railway wheels on wheel/rail interaction force and monitoring method[D]. Beijing: Beijing Jiaotong University, 2010.
王忆佳, 曾京, 罗仁, 等. 高速列车车轮多边形化对车辆动力学性能的影响[J]. 四川大学学报(工程科学版), 2013, 45(3): 176-182.
WANG Yijia, ZENG Jing, LUO Ren, et al. Effect of polygonal wheel on vehicle dynamic performance[J]. Journal of Sichuan University(Engineering Science Edition), 2013, 45(3): 176-182.
陈令怡. 考虑轮轨柔性的车轮多边形化对车辆动力学特性的影响研究[D]. 石家庄: 石家庄铁道大学, 2019.
CHEN Lingyi. Influence of wheel polygons on vehicle dynamics considering wheel and rail flexibility based on co-simulation[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019.
吴越, 韩健, 左齐宇, 等. 钢轨波磨对高速列车车轮多边形磨耗产生与发展的影响[J]. 机械工程学报, 2020, 56(17): 198-208.
WU Yue, HAN Jian, ZUO Qiyu, et al. Effect of rail corrugation on initiation and development of polygonal wear on high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(17): 198-208.
陈博. 高速列车车轮多边形的检测与识别方法研究[D]. 成都: 西南交通大学, 2018.
CHEN Bo. Study on detection and diagnosis method of wheel polygonization of high-speed trains[D]. Chengdu: Southwest Jiaotong University, 2018.
胡静涛. 高速列车车轮多边形磨耗仿真研究[D]. 成都: 西南交通大学, 2019.
HU Jingtao. Research on polygon wheels wear of high speed train by simulation[D]. Chengdu: Southwest Jiaotong University, 2019.
陈伟. 高速列车车轮多边形问题研究[D]. 成都: 西南交通大学, 2014.
CHEN Wei. Research on wheel polygonization of high-speed train[D]. Chengdu: Southwest Jiaotong University, 2014.
国家铁路局. 机车车辆动力学性能评定及试验鉴定规范:GB/T 5599—2019[S]. 北京: 中国标准出版社, 2019.
National Railway Administration of People's Republic of China. Specification for dynamic performance assessment and testing verification of rolling stock:GB/T 5599—2019[S]. Beijing: China Standards Press, 2019.
李蓓蓓. 振动分析的有效工具—功率谱密度[J]. 包装工程, 2004, 25(3): 46-47.
LI Beibei. The effective tool of vibration analysis—power spectral density[J]. Packaging Engineering, 2004, 25(3): 46-47.
0
浏览量
21
下载量
0
CSCD
4
CNKI被引量
关联资源
相关文章
相关作者
相关机构