1.合肥工业大学 电气及自动化学院,安徽 合肥 230009
2.株洲中车时代电气股份有限公司,湖南 株洲 412001
3.新型功率半导体器件国家重点实验室,湖南 株洲 412001
李贺龙(1987—),男,博士,教授,研究方向为功率半导体封装、可靠性与电力电子应用;E-mail: helong.li@hfut.edu.cn
扫 描 看 全 文
李贺龙, 丁立健, 刘国友. MOSFET和IGBT关断特性及其对并联特性的影响[J]. 机车电传动, 2021,(5):99-105.
Helong LI, Lijian DING, Guoyou LIU. Turn-off Characteristics of MOSFET and IGBT and Its Influence on Parallel Connection[J]. Electric Drive for Locomotives, 2021,(5):99-105.
李贺龙, 丁立健, 刘国友. MOSFET和IGBT关断特性及其对并联特性的影响[J]. 机车电传动, 2021,(5):99-105. DOI: 10.13890/j.issn.1000-128x.2021.05.015.
Helong LI, Lijian DING, Guoyou LIU. Turn-off Characteristics of MOSFET and IGBT and Its Influence on Parallel Connection[J]. Electric Drive for Locomotives, 2021,(5):99-105. DOI: 10.13890/j.issn.1000-128x.2021.05.015.
文章描述了MOSFET和IGBT关断特性的不同,及其对关断瞬间并联均流特性的影响。MOSFET和IGBT共有的MOS门极结构导致其在器件开通过程具备相似的开通特性。然而,MOSFET单极性结构和IGBT双极性结构的不同导致了其在关断过程中具备不同的关断原理(除了拖尾电流之外),这种不同的关断原理尤其表现在门极电压对关断电流的控制程度。MOSFET的关断电流完全直接受控于门极电压,而IGBT的关断电流在某种程度上不完全直接受控于门极电压。不同的关断原理进而导致了关断瞬间不同的并联均流特性,尤其是在电路参数不匹配的情况下的并联关断均流特性。文章通过理论分析和仿真建模对上述问题进行了研究,仿真和试验结果验证了所提的观点。
The different turn off characteristics of MOSFET and IGBT and their influence on the parallel current sharing characteristics at the moment of turn off were described. The common MOS gate structure of MOSFET and IGBT leads to similar turn-on characteristics in the device turn-on process. However, the difference between the unipolar structure of MOSFET and the bipolar structure of IGBT leads to different shutdown mechanisms in the shutdown process (except the tail current). This different shutdown mechanism is especially reflected in the control degree of gate voltage on the shutdown current. The turn-off current of MOSFET is completely and directly controlled by the gate voltage, while the off current of IGBT is not completely and directly controlled by the gate voltage to some extent. Different shutdown mechanisms lead to different parallel current sharing characteristics at the moment of shutdown, especially when the circuit parameters are mismatched. In this paper, the above problems were studied through theoretical analysis and simulation modeling. The simulation and experimental results verified the viewpoint of this paper.
MOSFETIGBT开关特性并联均流
MOSFETIGBTswitching characteristicsparallel current sharing
GHIMIRE P, PEDERSEN K B, VEGA A R D, et al. A real time measurement of junction temperature variation in high power IGBT modules for wind power converter application[C]//VDE. CIPS 2014 8th International Conference on Integrated Power Electronics Systems. Nuremberg: VDE, 2014.
VOLKE A, HORNKAMP M. IGBT Modules: Technologies,Driver and Application[M]. Munich: Infineon Technologies AG, 2012.
MAYER E. Development of motor controls using the semikron advanced integration power module[C]//IEEE. Proceedings Electrical Insulation Conference and Electrical Manufacturing Expo, 2005. Indianapolis: IEEE, 2005. DOI: 10.1109/EEIC.2005.1566298http://doi.org/10.1109/EEIC.2005.1566298.
SCHEUERMANN U. Reliability challenges of automotive power electronics[J]. Miroelectronics Reliability, 2009, 49(9/10/11): 1319-1325.
BAUER J G, DUETEMEYER T, LORENZ L. New IGBT development for traction drive and wind power[C]//IEEE. The 2010 International Power Electronics Conference-ECCE ASIA. Sapporo: IEEE, 2010. DOI: 10.1109/IPEC.2010.5543293http://doi.org/10.1109/IPEC.2010.5543293.
PERPIÑÀ X, NAVARRO L, JORDÀ X, et al. Reliability and lifetime prediction for IGBT modules in railway traction chains[EB/OL]. (2012-02-19) [2021-05-18]. http://www.intechopen.com/books/reliability-and-safety-inrailway/reliability-and-lifetime-prediction-for-igbt-modules-in-railwaytraction-chainshttp://www.intechopen.com/books/reliability-and-safety-inrailway/reliability-and-lifetime-prediction-for-igbt-modules-in-railwaytraction-chains.
QIU Y, DAI C, JIN R. Impact of power electronic devices development on power grids[C]//IEEE. 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Prague: IEEE, 2016. DOI: 10.1109/ISPSD.2016.7520766http://doi.org/10.1109/ISPSD.2016.7520766.
CHEN N, CHIMENTO F, NAWAZ M, et al. Dynamic characterization of parallel-connected high-power IGBT modules[J]. IEEE Transactions on Industry Applications, 2015, 51(1): 539-546. DOI: 10.1109/TIA.2014.2330075http://doi.org/10.1109/TIA.2014.2330075.
BORTIS D, BIELA J, KOLAR J W. Active gate control for current balancing of parallel-connected IGBT modules in solid-state modulators[J]. IEEE Transactions on Plasma Science, 2008, 36(5): 2632-2637. DOI: 10.1109/TPS.2008.2003971http://doi.org/10.1109/TPS.2008.2003971.
PENDHARKAR S, SHENAI K. Optimization of the anti-parallel diode in an IGBT module for hard-switching applications[J]. IEEE Transactions on Electron Devices, 1997, 44(5): 879-886. DOI: 10.1109/16.568053http://doi.org/10.1109/16.568053.
BASLER T, LUTZ J, JAKOB R, et al. The influence of asymmetries on the parallel connection of IGBT chips under short-circuit condition[C]//IEEE. Proceedings of the 2011 14th European Conference on Power Electronics and Applications. Birmingham: IEEE, 2011.
JOYCE J C. Current sharing and redistribution in high power IGBT modules[D]. Cambridgeshire: University of Cambridge, 2001.
LI H, BECZKOWSKI S, MUNK-NIELSEN S, et al. Circuit mismatch and current coupling effect influence on paralleling SiC MOSFETs in multichip power modules[C]//VDE. Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2015.
LI H, MUNK-NIELSEN S, WANG X, et al. Influences of device and circuit mismatches on paralleling silicon carbide MOSFETs[J]. IEEE Transactions on Power Electronics, 2016, 31(1): 621-634. DOI: 10.1109/TPEL.2015.2408054http://doi.org/10.1109/TPEL.2015.2408054.
LI H, MUNK-NIELSEN S, BECZKOWSKI S, et al. A novel DBC layout for current imbalance mitigation in SiC MOSFET multichip power modules[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8042-8045. DOI: 10.1109/TPEL.2016.2562030http://doi.org/10.1109/TPEL.2016.2562030.
SHENG William W, COLINO Ronald P. Power Electronic Modules: Design and Manufacture[M]. Florida: CRC Press, 2005.
FABRE J, LADOUX P. Parallel connection of 1200-V/100-A SiC-MOSFET half-bridge modules[J]. IEEE Transactions on Industry Applications, 2016, 52(2): 1669-1676. DOI: 10.1109/TIA.2015.2496109http://doi.org/10.1109/TIA.2015.2496109.
LI H, MUNK-NIELSEN S, BECZKOWSKI S, et al. Effects of auxiliary source connections in multichip power module[C]//IEEE. 2016 IEEE Applied Power Electronics Conference and Exposition (APEC). Long Beach: IEEE, 2016. DOI: 10.1109/APEC.2016.7468307http://doi.org/10.1109/APEC.2016.7468307.
FINK K, BERNET S. Advanced gate drive unit with close-loop dic/dt control[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2587-2595. DOI: 10.1109/TPEL.2012.2215885http://doi.org/10.1109/TPEL.2012.2215885.
LOBSIGER Y, KOLAR J W. Closed-loop di/dt and dv/dt IGBT gate driver[J]. IEEE Transactions on Power Electronics, 2015, 30(6): 3402-3417. DOI: 10.1109/TPEL.2014.2332811http://doi.org/10.1109/TPEL.2014.2332811.
SHU L, ZHANG J, PENG F, et al. An active current source IGBT gate drive with closed-loop di/dt and dv/dt control[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3787-3796. DOI: 10.1109/TPEL.2016.2587340http://doi.org/10.1109/TPEL.2016.2587340.
BRYANT A, YANG S, MAWBY P, et al. Investigation into IGBT dV/dt during turn-off and its temperature dependence[J]. IEEE Transactions on Power Electronics, 2011, 26(10): 3019-3031. DOI: 10.1109/TPEL.2011.2125803http://doi.org/10.1109/TPEL.2011.2125803.
RAMAMURTHY A, SAWANT S, BALIGA B J. Modeling the [dV/dt] of the IGBT during inductive turn off[J]. IEEE Transactions on Power Electronics, 1999, 14(4): 601-606. DOI: 10.1109/63.774195http://doi.org/10.1109/63.774195.
0
浏览量
17
下载量
0
CSCD
5
CNKI被引量
关联资源
相关文章
相关作者
相关机构