1.西南交通大学 电气工程学院,四川 成都 611756
周荣斌(1998—),男,硕士,主要研究方向为功率半导体器件设计与应用;Email: rongbinz@my.swjtu.edu.cn
扫 描 看 全 文
周荣斌, 杨平, 唐茂森, 等. 1 700 V IGBT场限环场板终端优化设计[J]. 机车电传动, 2021,(5):58-63.
Rongbin ZHOU, Ping YANG, Maosen TANG, et al. Optimized Design of 1 700 V IGBT Field Limiting Ring and Field Plate Termination[J]. Electric Drive for Locomotives, 2021,(5):58-63.
周荣斌, 杨平, 唐茂森, 等. 1 700 V IGBT场限环场板终端优化设计[J]. 机车电传动, 2021,(5):58-63. DOI: 10.13890/j.issn.1000-128x.2021.05.009.
Rongbin ZHOU, Ping YANG, Maosen TANG, et al. Optimized Design of 1 700 V IGBT Field Limiting Ring and Field Plate Termination[J]. Electric Drive for Locomotives, 2021,(5):58-63. DOI: 10.13890/j.issn.1000-128x.2021.05.009.
击穿电压是IGBT的一个重要参数,而器件的击穿电压主要与终端结构有关,所以对终端结构的研究一直备受关注。文章设计了一种1 700 V的IGBT终端结构,采用场限环和场板相结合的终端技术,降低了器件表面电场峰值,提高了其击穿电压。通过仿真分析多组不同场板长度和氧化层厚度的终端结构,采用多项式拟合和多元回归分析击穿电压、表面电场分布与每个环上的场板长度和氧化层厚度的关系;在此基础上提前预测器件的击穿电压和表面电场分布,缩短终端设计时间;经过调整后,在366 μm的终端上仿真实现了1 927 V的击穿电压,终端效率达到了91.5%。该终端优化设计方法能够优化器件的表面电场分布,有效降低表面电场峰值,并提高终端效率。
The breakdown voltage is an important parameter for IGBT, and the breakdown voltage of the device is mainly related to the termination structure, so the research on the termination structure has always attracted attention. The termination structure of 1 700 V IGBT was designed in this paper. The termination technique combining field limiting ring and field plate could reduce the peak electric field on the device surface and improve the breakdown voltage. The termination structures with different field plate length and oxide thickness were simulated. Polynomial fitting and multiple regression were used to analyze the relationship between breakdown voltage and surface electric field distribution, the length of field plate on each ring and oxide thickness. Based on this, the breakdown voltage and surface electric field of the device could be predicted, and the time spending on termination design could be shortened. After adjustment, the breakdown voltage has achieved 1 927 V with 366 μm length on termination structure, and efficiency of the termination is 91.5%. The peak of surface electric field was effectively reduced and the surface electric field distribution was optimized.
IGBT场限环场板击穿电压多元回归多项式拟合仿真
IGBTfield limiting ringfield platebreakdown voltagemultiple regressionfit polynomialsimulation
BALIGA B J. IGBT器件:物理、设计与应用[M]. 北京: 机械工业出版社, 2018.
BALIGA B J. The IGBT device: physics, design and applications of the insulated gate bipolar transistor[M]. Beijing: China Machine Press, 2018.
BALIGA B J. Modern power devices[M]. New York: Wiley, 1987.
何进, 张兴. 场限环结构电压和边界峰值电场分布及环间距优化[J]. 固体电子学研究与进展, 2003, 23(2): 164-169.
HE Jin, ZHANG Xing. A New analytical model for predicting distribution of the ring junction voltage, edge peak field and optimal ring spacing of planar junction[J]. Research & Progress of SSE, 2003, 23(2): 164-169.
遇寒, 沈克强. 功率半导体器件的场限环研究[J]. 电子器件, 2007, 30(1): 210-214.
YU Han, SHEN Keqiang. Research of FLR of power semiconductor device[J]. Chinese Journal of Electron Devices, 2007, 30(1): 210-214.
高明超, 刘钺杨, 刘江, 等. IGBT多级场板终端结构的仿真和验证[J]. 固体电子学研究与进展, 2013, 33(1): 76-79.
GAO Mingchao, LIU Yueyang, LIU Jiang, et al. Simulation and verification of the multistep field plates termination[J]. Research & Progress of SSE, 2013, 33(1): 76-79.
缪润妍. 半导体功率器件的高压终端结设计[D]. 上海: 复旦大学, 2012.
MIAO Runyan. High-voltage terminal junction design of semiconductor power devices[D]. Shanghai: Fudan University, 2012.
BALIGA B J. High-voltage device termination techniques comparative[J]. IEE Proceedings I (Solid-State and Electron Devices), 1982, 129(5): 173-179. DOI: 10.1049/ip-i-1.1982.0037http://doi.org/10.1049/ip-i-1.1982.0037.
FABRE A, SAAID O, WIEST F, et al. Low power current mode second-order bandpass IF filter[J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1997, 44(6): 436-446. DOI: 10.1109/82.592570http://doi.org/10.1109/82.592570.
陈天, 张旭, 廖永亮, 等. 1 200 V沟槽栅场截止型IGBT终端设计[J]. 微电子学, 2016, 46(5): 716-720.
CHEN Tian, ZHANG Xu, LIAO Yongliang, et al. Design of a 1 200 V trench gate field stop IGBT terminal[J]. Microelectronics, 2016, 46(5): 716-720.
DRAGOMIRESCU D, CHARITAT G, MORANCHO F, et al. Novel concept for high voltage junction termination techniques using very deep trenches[C]//IEEE. 1999 International Semiconductor Conference. Sinaia: IEEE, 1999. DOI: 10.1109/SMICND.1999.810432http://doi.org/10.1109/SMICND.1999.810432.
李如春, 王晓东. IGBT平面高压终端结构的研究[J]. 浙江工业大学学报, 2003, 31(3): 256-259.
LI Ruchun, WANG Xiaodong. Study on planar high voltage termination of IGBT[J]. Journal of Zhejiang University of Technology, 2003, 31(3): 256-259.
陈立力. 高压功率器件结终端的设计研究[D]. 北京: 北京工业大学, 2000.
CHEN Lili. Design of the junction termination of high voltage power devices[D]. Beijing: Beijing University of Technology, 2000.
BALIGA B J. 功率半导体器件基础[M]. 北京: 电子工业出版社, 2013.
BALIGA B J. Fundamentals of power semiconductor devices[M]. Beijing: Publishing House of Electronics Industry, 2013.
陈星弼. 功率MOSFET与高压集成电路[M]. 南京: 东南大学出版社, 1990.
CHEN Xingbi. Power MOSFET and high voltage integrated circuit[M]. Nanjing: Southeast University Press, 1990.
陈星弼. 场限环的简单理论[J]. 电子学报, 1988, 16(3): 6-10.
CHEN Xingbi. A simple theory of floating field limiting rings[J]. ACTA Electronica Sinica, 1988, 16(3): 6-10.
胡玉松, 冯全源, 陈晓培. 一款600 V VDMOS终端结构的设计[J]. 微电子学与计算机, 2014(6): 129-132.
HU Yusong, FENG Quanyuan, CHEN Xiaopei. Design of a 600 V VDMOS termination structure[J]. Microelectronics & Computer, 2014(6): 129-132.
刘铭, 冯全源, 陈晓培, 等. 一款800 V VDMOS终端结构的设计[J]. 电子元件与材料, 2015(6): 66-69.
LIU Ming, FENG Quanyuan, CHEN Xiaopei, et al. Design of 800 V VDMOS termination structure[J]. Electronic Components and Materials, 2015(6): 66-69.
陆界江. 1 700 V高压IGBT结终端保护技术仿真分析与工艺实现[D]. 沈阳: 沈阳工业大学, 2009.
LU Jiejiang. Simulation and process of junction termination techniques of 1 700 V IGBT[D]. Shenyang: Shenyang University of Technology, 2009.
杨文韬. 双极型绝缘栅晶体管终端可靠性的分析[D]. 成都: 电子科技大学, 2014.
YANG Wentao. The analysis of the reliability of the junction termination for IGBT[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
0
浏览量
25
下载量
0
CSCD
3
CNKI被引量
关联资源
相关文章
相关作者
相关机构