1.株洲中车时代半导体有限公司,湖南 株洲 412001
2.新型功率半导体器件国家重点实验室,湖南 株洲 412001
潘学军(1987—)男,工程师,现主要从事大功率半导体器件开发及应用技术研究;E-mail: panxj@csrzic.com
扫 描 看 全 文
潘学军, 陈芳林, 孙永伟, 等. 适用于HVDC的4.5 kV逆阻IGCT性能研究[J]. 机车电传动, 2021,(5):47-52.
Xuejun PAN, Fanglin CHEN, Yongwei SUN, et al. Study on Characteristics of 4.5 kV Reverse Blocking IGCT for HVDC[J]. Electric Drive for Locomotives, 2021,(5):47-52.
潘学军, 陈芳林, 孙永伟, 等. 适用于HVDC的4.5 kV逆阻IGCT性能研究[J]. 机车电传动, 2021,(5):47-52. DOI: 10.13890/j.issn.1000-128x.2021.05.007.
Xuejun PAN, Fanglin CHEN, Yongwei SUN, et al. Study on Characteristics of 4.5 kV Reverse Blocking IGCT for HVDC[J]. Electric Drive for Locomotives, 2021,(5):47-52. DOI: 10.13890/j.issn.1000-128x.2021.05.007.
逆阻型集成门极换流晶闸管(Reverse Blocking Integrated Gate Commutated Thyristor, RB-IGCT)作为一种具备双向耐压与正向可控关断的新型全控型电力电子器件,在电网应用中越来越受到关注。文章分析了高压直流输电(High Voltage Direct Current, HVDC)应用中换相失败的现状、原因及对功率半导体器件的要求,对比了不同器件种类和不同IGCT类型间的特点。针对4.5 kV逆阻IGCT的静态特性、通态特性和开关特性进行了理论与仿真分析。最后通过合成试验验证了逆阻IGCT门极驱动高位取能、黑启动与对HVDC工况的适应性,试验结果表明4.5 kV逆阻IGCT可作为提升HVDC抵御换相失败能力的优选器件之一。
As a new fully controlled power electronic device with bidirectional blocking voltage and forward controllable turn off, reverse blocking IGCT has attracted more and more attention in power grid applications. The status,causes of commutation failure in HVDC applications and the requirements for power semiconductor devices were analyzed, and the characteristics of different devices and different IGCT types was compared. At the same time, the static characteristics, on-state characteristics and switching characteristics of 4.5 kV reverse blocking IGCT were analyzed theoretically and simulated. Finally, the gate driver driven high-level energy taking, black start and adaptability to HVDC conditions were verified by synthesis test. The test results showed that 4.5 kV reverse blocking IGCT could be used as one of the preferred devices to enhance the ability of HVDC to resist commutation failure.
HVDC换相失败逆阻IGCT静态特性开关特性黑启动仿真
HVDCcommutation failureRB-IGCTstatic characteristicsswitching characteristicsblack startsimulation
李明节. 大规模特高压交直流混联电网特性分析与运行控制[J]. 电网技术, 2016, 40(4): 985-991.
LI Mingjie. Characteristic analysis and operational control of large-scale hybrid UHV AC/DC power grids[J]. Power grid technology, 2016, 40(4): 985-991.
阮思烨, 徐凯, 刘丹, 等. 直流输电系统换相失败统计分析及抵御措施建议[J]. 电力系统自动化, 2019, 43(18): 13-17.
RUAN Siye, XU Kai, LIU Dan, et al. Statistical analysis and suggestions on resistance measures for commutation failures of HVDC transmission system[J]. Automation of Electric Power Systems, 2019, 43(18): 13-17.
王玲, 文俊, 崔康生, 等. 多馈入直流输电系统换相失败研究综述[J]. 电工电能新技术, 2017, 36(8): 56-65.
WANG Ling, WEN Jun, CUI Kangsheng, et al. Research survey of commutation failure in MIDC transmission systems[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(8): 56-65.
郭焕, 温家良, 汤广福, 等. 高压直流输电晶闸管阀关断的电压应力分析[J]. 中国电机工程学报, 2010, 30(12): 1-6.
GUO Huan, WEN Jialiang, TANG Guangfu, et al. Analysis of the turn-off voltage stress on HVDC thyristor valve[J]. Proceedings of the CSEE, 2010, 30(12): 1-6.
赵彤, 吕明超, 娄杰, 等. 多馈入高压直流输电系统的异常换相失败研究[J]. 电网技术, 2015, 39(3): 705-711.
ZHAO Tong, LYU Mingchao, LOU Jie, et al. Analysis on potential anomalous commutation failure in multi-infeed HVDC transmission systems[J]. Power System Technology, 2015, 39(3): 705-711.
王晶, 梁志峰, 江木, 等. 多馈入直流同时换相失败案例分析及仿真计算[J]. 电力系统自动化, 2015, 39(4): 141-146.
WANG Jing, LIANG ZHifeng, JIANG Mu, et al. Case analysis and simulation of commutation failure in multi-infeed HVDC transmission systems[J]. Automation of Electric Power Systems, 2015, 39(4): 141-146.
LÜSCHER Matthias, SETZ Thomas. Applying IGCTs[M]. Lenzburg: ABB Switzerland Ltd Semiconductors, 2007.
张明, 戴小平, 李继鲁, 等. KIc 4000-45非对称型IGCT组件的研究[J]. 变流技术与电力牵引, 2007(2): 22-26.
ZHANG Ming, DAI Xiaoping, LI Jilu, et al. Research of KIc 4000-45 Asymmetrical IGCT Assembly[J]. Converter Technology & Electric Traction, 2007(2): 22-26.
ZHAO B, ZENG R, YU Z, et al. A more prospective look at IGCT: Uncovering a promising choice for DC grids[J]. IEEE Industrial Electronics Magazine, 2018, 12(3): 6-18. DOI: 10.1109/MIE.2018.2855216http://doi.org/10.1109/MIE.2018.2855216.
CHEN Z, YU Z, ZHANG X, et al. Analysis and experiments for IGBT, IEGT, and IGCT in hybrid DC circuit breaker[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 2883-2892. DOI: 10.1109/TIE.2017.2764863http://doi.org/10.1109/TIE.2017.2764863.
刘文华, 胡雨辰, 刘炳, 等. IGCT和IEGT-适用于STATCOM的新型大功率开关器件[J]. 电力系统自动化, 2000, 24(23): 66-70.
LIU Wenhua, HU Yuchen, LIU Bing, et al. IGCT and IEGT--new high power silicon switches suitable for STATCOM[J]. Automation of Electric Power Systems, 2000, 24(23): 66-70.
CHEN F, PAN X, ZENG H, et al. Study on performance optimization of IGCT device for DC circuit breaker[C]//IEEE. 2019 5th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). Kitakyushu: IEEE, 2019. DOI: 10.1109/ICEPE-ST.2019.8928890http://doi.org/10.1109/ICEPE-ST.2019.8928890.
STIASNY T, STREIT P. A new combined local and lateral design technique for increased SOA of large area IGCTs[C]//IEEE. The 17th international symposium on power semiconductor devices and ICs, 2005. Santa Barbara: IEEE, 2005. DOI: 10.1109/ISPSD.2005.1487986http://doi.org/10.1109/ISPSD.2005.1487986.
ZENG H, CHEN X, CHEN Y, et al. IGCT self-protection strategy for IGCT converters[C]//IEEE. 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019-ECCE Asia). Busan: IEEE, 2019. DOI: 10.23919/ICPE2019-ECCEAsia42246.2019.8797104http://doi.org/10.23919/ICPE2019-ECCEAsia42246.2019.8797104.
ZENG H, CHEN X, ZHANG S, et al. An IGCT anode current detecting method based on Rogowski coil[C]//IEEE. 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). Tampa: IEEE, 2017. DOI: 10.1109/APEC.2017.7930894http://doi.org/10.1109/APEC.2017.7930894.
0
浏览量
19
下载量
0
CSCD
2
CNKI被引量
关联资源
相关文章
相关作者
相关机构