1.中国科学院微电子研究所 高频高压器件与集成研发中心,北京 100029
2.广东省科学院 半导体研究所,广东 广州 510640
张海涛(1986—),男,博士研究生,研究方向为氮化镓功率器件设计、性能及可靠性;E-mail: zhanghaitao19@mails.ucas.edu.cn
姜南(1989—),男,博士,研究方向为功率半导体器件封装可靠性;Email: jnbomber@live.com
扫 描 看 全 文
张海涛, 姜南. 宽禁带功率器件键合缓冲技术的可靠性分析[J]. 机车电传动, 2021,(5):28-32.
Haitao ZHANG, Nan JIANG. Reliability Analysis of Bond Buffer Technologies for Wide Bandgap Power Devices[J]. Electric Drive for Locomotives, 2021,(5):28-32.
张海涛, 姜南. 宽禁带功率器件键合缓冲技术的可靠性分析[J]. 机车电传动, 2021,(5):28-32. DOI: 10.13890/j.issn.1000-128x.2021.05.004.
Haitao ZHANG, Nan JIANG. Reliability Analysis of Bond Buffer Technologies for Wide Bandgap Power Devices[J]. Electric Drive for Locomotives, 2021,(5):28-32. DOI: 10.13890/j.issn.1000-128x.2021.05.004.
在电力电子应用中,性能优于硅功率器件的宽禁带功率器件得到广泛关注。然而,传统功率器件封装中的芯片顶部的电气互连结构现在已成为限制宽禁带功率器件寿命的主要因素。因此,有必要通过使用键合缓冲技术将铜键合线、焊带和引线框架来代替铝键合线作为芯片顶部的电气互联以满足宽禁带功率器件在高温工作条件下的要求。文章回顾了不同键合缓冲技术和金属键合材料在功率循环测试中的可靠性表现。其中,因瓦合金键合缓冲材料与铜键合线的结合在众多键合材料中显示出最强大的功率循环测试能力。失效分析显示,宽禁带功率器件封装的薄弱点已经从芯片顶部的键合材料变为氧化铝陶瓷衬底或芯片上表面的铝金属层。
Wide bandgap power devices with excellent performance over traditional silicon power devices have been introduced as the prime candidate for power electronics applications. However, interconnections on the chip topside in the traditional packaging are now limiting the lifetime of wide bandgap power devices. It is necessary to replace aluminum bond wires with copper bond wires, ribbons, and lead-frames with the help of bond buffer technologies to ful fill the requirements of wide bandgap power devices under high temperature operation conditions. The reliability performances of different bond buffer technologies and bonding materials under power cylcing tests were reviewed. The Cu-Invar-Cu bond buffer combined with Cu bonding material showed the most robust power cycling capability among all bonding materials. Failure analysus shows that the weak point of the packaging of wide bandgap power devices has been changed from the bonding material to the Al,2,O,3, ceramic substrate or the aluminum metallization layer of the chip.
键合缓冲可靠性碳化硅器件氮化镓器件封装
bond bufferreliabilitysilicon carbide devicegalium nitride devicepackaging
YODER M N. Wide bandgap semiconductor materials and devices[J]. IEEE Transactions on Electron Devices, 1996, 43(10): 1633-1636. DOI: 10.1109/16.536807http://doi.org/10.1109/16.536807.
SCHEUERMANN U, BECKEDAHL P. The road to the next generation power module - 100% solder free design[C]//VDE. 5th International Conference on Integrated Power Electronics Systems. Nuremberg: VDE, 2008.
GUTH K, SIEPE D, Görlich J, et al. New assembly and interconnects beyond sintering methods[J] [C]//IEEE. 6th International Conference on Integrated Power Electronics Systems. Nuremberg: IEEE, 2010.
DIRK S, REINHOLD B, ROMAN R. The future of wire bonding is? Wire bonding![C]//IEEE. 6th International Conference on Integrated Power Electronics Systems. Nuremberg: IEEE, 2010.
RUDZKI J, OSTERWALD F, BECKER M, et al. Novel Cubond contacts on sintered metal buffer for power module with extended capabilities[C]//IEEE. 7th International Conference on Integrated Power Electronics Systems. Nuremberg: IEEE, 2012.
STREIBEL A, BECKER M, MUEHLFELD O, et al. Reliability of SiC MOSFET with danfoss bond buffer technology in automotive traction power modules[C]//VDE. PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion,Renewable Energy and Energy Management. Nuremberg: VDE, 2019.
ÖZKOL Emre, BREM Franziska, LIU Chunlei, et al. Enhanced power cycling performance of IGBT modules with a reinforced emitter contact[J]. Microelectronics Reliability, 2015, 55(6): 912-918. DOI: 10.1016/j.microrel.2015.03.013http://doi.org/10.1016/j.microrel.2015.03.013.
NOTSU H, MICHIKOSHI H, SHINKAI J, et al. SiC module operational at 200℃ with high power-cycling capability using fatigue-free chip surface packaging technologies[C]//VDE. PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Germany: VDE, 2020.
HAMID A, BECK N, THOMAS K, et al. Reliability and lifetime evaluation of different wire bonding technologies for high power IGBT modules[J]. Microelectronics Reliability, 1999, 39(6/7): 1153-1158. DOI: 10.1016/S0026-2714(99)00164-Xhttp://doi.org/10.1016/S0026-2714(99)00164-X.
JIANG Nan, MIRIC Anton-Zoran, KLEIN Andreas Steffen, et al. Investigation of power cycling capability of a novel Cu wire bonded interconnection system[C]//VDE. PCIM Asia 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Shanghai: VDE, 2018.
HEUCK N, BAYERER R, KRASEL S, et al. Lifetime analysis of power modules with new packaging technologies[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's(ISPSD). Hong Kong: IEEE, 2015. DOI: 10.1109/ISPSD.2015.7123454http://doi.org/10.1109/ISPSD.2015.7123454.
BEHRENDT S, EISELE R, ANDERSEN K, et al. Feasibility of copper-based ribbon bonding as an assembly method for advanced power modules[C]//VDE. PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. Nuremberg: VDE, 2018.
FEISST Markus, SCHAETZLE Philip, WILDE Juergen, et al. Power chip interconnections based on TLP and sintering of CTE matched conductors[C]//VDE. CIPS 2018; 10th International Conference on Integrated Power Electronics Systems. Stutgart: VDE, 2018.
0
浏览量
28
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构