1.沧州交通学院,河北 沧州 061199
李孟娇(1989—),女,硕士,主要从事信息与通信工程研究;Email: mjli@bjtuhbxy.cn
扫 描 看 全 文
刘日, 孙彤, 张义伟, 等. 基于无模型自适应控制的高速列车ATO控制器[J]. 机车电传动, 2021,(4):119-125.
Ri LIU, Tong SUN, Yiwei ZHANG, et al. ATO Controller for High-speed Train Based on Model-Free Adaptive Control[J]. Electric Drive for Locomotives, 2021,(4):119-125.
刘日, 孙彤, 张义伟, 等. 基于无模型自适应控制的高速列车ATO控制器[J]. 机车电传动, 2021,(4):119-125. DOI: 10.13890/j.issn.1000-128x.2021.04.019.
Ri LIU, Tong SUN, Yiwei ZHANG, et al. ATO Controller for High-speed Train Based on Model-Free Adaptive Control[J]. Electric Drive for Locomotives, 2021,(4):119-125. DOI: 10.13890/j.issn.1000-128x.2021.04.019.
针对高速列车在多变复杂环境运行时,传统控制器出现的动力学模型不匹配和司机操作存在安全隐患的问题,提出一种基于无模型自适应控制(Model-Free Adaptive Control, MFAC)的高速列车自动驾驶控制器设计方案。首先,构建全格式动态数据列车模型,将列车的非线性特性转移到伪梯度中;其次,根据全格式动态数据列车模型设计无模型自适应控制律和列车控车原理,通过列车运行数据估计伪梯度,构建ATO控制器;最后,使用“兰州西—西宁”的动车组运行数据进行仿真,得到MFAC控制器作用下的速度追踪误差为0.254 km/h,列车加速度冲击率区间主要分布于[0, 0.1)中,约占总步长的83.8%,并与模糊自适应PID(Proportion-Integral-Derivative)在速度追踪、位移追踪和舒适度方面做了对比,结果表明该控制器的性能更优。
In view of the problems of dynamic model mismatch of traditional controller and potential safety hazards of driver operation when the high-speed train operated in a changeable and complex environment, a high speed train automatic driving controller design scheme based on model-free adaptive control (MFAC) was proposed. Firstly, a full-format dynamic data train model to transfer the nonlinear characteristics of the train to the pseudo gradient was constructed; Secondly, according to the full-format dynamic data train model,the model-free adaptive control law and the train control principle were designed, and with the pseudo gradient estimated through the train operation data, the ATO controller was constructed; Finally, "Lanzhouxi-Xining" EMU operating data was used for simulation. The result shows that: speed tracking error under the action of the MFAC controller is 0.254 km/h, and the train acceleration impact rate is mainly distributed in [0, 0.1), accounting for about 83.8% of the total step length. By compared with fuzzy adaptive PID (proportion-integral-derivative)in terms of speed tracking, displacement tracking, and comfort, the performance of the proposed controller is proved better.
高速列车无模型自适应列车自动驾驶全格式动态线性化仿真
high speed trainmodel-free adaptiveautomatic train operationfull-format dynamic linearizationsimulation
YIN Jiateng, TANG Tao, YANG Lixing, et al. Research and development of automatic train operation for railway transportation systems: a survey[J]. Transportation Research Part C: Emerging Technologies, 2017(85): 548-572. DOI: 10.1016/j.trc.2017.09.009http://doi.org/10.1016/j.trc.2017.09.009.
何坤. 城轨列车自动驾驶算法的设计与实现[D]. 成都: 西南交通大学, 2017.
HE Kun. Design and implementation of automatic train operation algorithm of metro trains[D]. Chengdu: Southwest Jiaotong University, 2017.
GANESAN M, EZHILARASI D, JIJO Benni. Hybrid model reference adaptive second order sliding mode controller for automatic train operation[J]. IET Control Theory &Applications, 2017, 11(8): 1222-1233. DOI: 10.1049/ietcta.2016.1275http://doi.org/10.1049/ietcta.2016.1275.
CAO Yuan, MA Lianchuan, ZHANG Yuzhuo. Application of fuzzy predictive control technology in automatic train operation[J]. Cluster Computing, 2018. DOI: 10.1007/s10586-018-2258-0http://doi.org/10.1007/s10586-018-2258-0.
衷路生, 颜争, 杨辉, 等. 数据驱动的高速列车子空间预测控制[J]. 铁道学报, 2013, 35(4): 77-83.
ZHONG Lusheng, YAN Zheng, YANG Hui, et al. Predictive control of high-speed train based on data driven subspace approach[J]. Journal of the China Railway Society, 2013, 35(4): 77-83.
LI Zhenxuan, HOU Zhongsheng. Adaptive iterative learning control based high speed train operation tracking under iteration-varying parameter and measurement noise[J]. Asian Journal of Control, 2015, 17(5): 1779-1788. DOI: 10.1002/asjc.1093http://doi.org/10.1002/asjc.1093.
WANG Ning, SU Shunfeng, YIN Jianchuan, et al. Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: an adaptive universe-based fuzzy control approach[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1613-1625. DOI: 10.1109/TFUZZ.2017.2737405http://doi.org/10.1109/TFUZZ.2017.2737405.
XU Dezhi, JIANG Bin, SHI Peng. A novel model-free adaptive control design for multivariable industrial processes[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6391-6398. DOI: 10.1109/TIE.2014.2308161http://doi.org/10.1109/TIE.2014.2308161.
CHEN Hungyi, LIANG Jinwei. Model-free adaptive sensing and control for a piezoelectrically actuated system[J]. Sensors, 2010, 10(12): 10545-10559. DOI: 10.3390/s101210545http://doi.org/10.3390/s101210545.
石卫师. 基于无模型自适应控制的城轨列车自动驾驶研究[J]. 铁道学报, 2016, 38(3): 72-77.
SHI Weishi. Research on automatic train operation based on model-free adaptive control[J]. Journal of the China Railway Society, 2016, 38(3): 72-77.
罗岩. 预测控制在列车自动驾驶系统中的应用研究[D]. 上海: 上海交通大学, 2015.
LUO Yan. Research on design and application of model predictive control for automatic train operation system[D]. Shanghai: Shanghai Jiaotong University, 2015.
YAO Xiuming, WU Ligang, GUO Lei. Disturbance-observer-based fault tolerant control of high-speed trains: a markovian jump system model approach[J]. IEEE Transactions on Systems, Man and Cybernetics:Systems, 2020, 50(4): 1476-1485. DOI: 10.1109/TSMC.2018.2866618http://doi.org/10.1109/TSMC.2018.2866618.
李子钧. 基于模糊自适应PID控制的列车自动驾驶系统的研究[D]. 北京: 北京交通大学, 2010.
LI Zijun. Research on automatic train operation system based on fuzzy self-adaptive PID[D]. Beijing: Beijing Jiaotong University, 2010.
0
浏览量
5
下载量
0
CSCD
3
CNKI被引量
关联资源
相关文章
相关作者
相关机构