1.大连交通大学 机车车辆工程学院,辽宁 大连 116028
2.南昌航空大学 航空制造工程学院,江西 南昌 330063
高月华(1981—),女,博士,副教授,主要从事车辆结构优化设计的研究;E-mail:gaoyuehua81@163.com
扫 描 看 全 文
韩新利, 高月华. 基于响应面法的三轴转向架构架抗疲劳可靠性优化[J]. 机车电传动, 2021,(3):152-156.
Xinli HAN, Yuehua GAO. Fatigue Reliability Optimization for Three-Axle Bogie Frame Based on Response Surface Method[J]. Electric Drive for Locomotives, 2021,(3):152-156.
韩新利, 高月华. 基于响应面法的三轴转向架构架抗疲劳可靠性优化[J]. 机车电传动, 2021,(3):152-156. DOI: 10.13890/j.issn.1000-128x.2021.03.105.
Xinli HAN, Yuehua GAO. Fatigue Reliability Optimization for Three-Axle Bogie Frame Based on Response Surface Method[J]. Electric Drive for Locomotives, 2021,(3):152-156. DOI: 10.13890/j.issn.1000-128x.2021.03.105.
以三轴转向架构架为研究对象,对其进行了结构强度与关键焊缝疲劳寿命可靠性分析,在此基础上以主要壁板厚度为变量,考虑强度和疲劳寿命可靠度约束建立转向架构架抗疲劳轻量化模型,并采用缩小空间响应面近似优化法进行求解。优化后构架减重约4.3%,将不确定性因素考虑进结构优化过程中,优化结果更加合理。
The three-axle bogie frame was taken as the research object, the reliability analysis for structural strength and fatigue life of the key welds were carried out. Based on the thickness variables of key plates, the anti-fatigue lightweight model for the bogie frame was proposed with strength and fatigue life constraints. This optimization model was solved by the reduced response surface method. The optimization results showed that the total mass was reduced by 4.3%. This optimization result was more reasonable by consideration of uncertainties, which provided a reference for structure optimization.
转向架构架疲劳寿命可靠性分析响应面法结构优化有限元分析
bogie framefatigue lifereliability analysisresponse surface methodologystructure optimizationFEA
严隽耄, 傅茂海. 车辆工程[M]. 3版. 北京: 中国铁道出版社, 2011: 101-105.
YAN Junmao, FU Maohai. Vehicle engineering[M]. 3rd ed. Beijing: China Railway Publishing House, 2011: 101-105.
米彩盈, 李沛. 高速动力车转向架焊接构架优化设计[J]. 机车电传动, 2005(1): 46-49.
MI Caiying, LI Pei. Optimization design of welded bogie frame for high speed power car[J]. Electric Drive for Locomotives, 2005(1): 46-49.
GAO Yuehua, LIU Qipeng, WANG Yuedong, et al. Lightweight design with weld fatigue constraints for a three-axle bogie frame using sequential approximation optimisation method[J]. International Journal of Vehicle Design, 2017, 73(1/2/3): 3. DOI: 10.1504/IJVD.2017.10003396http://doi.org/10.1504/IJVD.2017.10003396
CHO J G, KOO J S, JUNG H S. A lightweight design approach for an EMU carbody using a material selection method and size optimization[J]. Journal of Mechanical Science and Technology, 2016, 30(2): 673-681. DOI: 10.1007/s12206-016-0123-8http://doi.org/10.1007/s12206-016-0123-8.
PARK B H, LEE K Y. Bogie frame design in consideration of fatigue strength and weight reduction[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2006, 220(3): 201-206. DOI: 10.1243/09544097f01405http://doi.org/10.1243/09544097f01405.
HAN S W, JUNG H S. Weight reducing of aluminum extrusion profiles of a railway-car body based on topology and size optimization[J]. Transactions of the Korean Society of Mechanical Engineers-A, 2011, 35(2): 213-221.
聂春戈, 李晓峰, 兆文忠. 高速转向架轴箱转臂结构拓扑优化设计[J]. 机械设计, 2007, 24(6): 58-60.
NIE Chunge, LI Xiaofeng, ZHAO Wenzhong. Topological optimization design for the structure of tumbler of high speed bogie axle box[J]. Journal of Machine Design, 2007, 24(6): 58-60.
张晓燕. 基于APDL语言的高速转向架焊接构架优化设计[J]. 机械设计, 2013, 30(5): 45-47.
ZHANG Xiaoyan. Optimization design of high speed bogie welded frame based on APDL language[J]. Journal of Machine Design, 2013, 30(5): 45-47.
黄孝亮, 孙丽萍, 王玉艳, 等. 铁路货车转向架摇枕结构拓扑优化设计[J]. 大连交通大学学报, 2013, 34(2): 1-5.
HUANG Xiaoliang, SUN Liping, WANG Yuyan, et al. Structural topological optimization research for railway wagon bolster[J]. Journal of Dalian Jiaotong University, 2013, 34(2): 1-5.
李永华, 梁校嘉, 周峰, 等. 基于优化设计的门式卸车机结构可靠性分析[J]. 中国工程机械学报, 2017, 15(3): 261-266.
LI Yonghua, LIANG Xiaojia, ZHOU Feng, et al. Structural reliability analysis on portal-type unloader based on optimization design[J]. Chinese Journal of Construction Machinery, 2017, 15(3): 261-266.
高月华, 石晓飞, 谢素明, 等. 高速列车车体的灵敏度分析及轻量化设计[J]. 铁道科学与工程学报, 2017, 14(5): 885-891.
GAO Yuehua, SHI Xiaofei, XIE Suming, et al. Sensitivity analysis and lightweight design for high-speed train car body[J]. Journal of Railway Science and Engineering, 2017, 14(5): 885-891.
丁彦闯, 兆文忠. 考虑疲劳损伤约束的车辆焊接结构轻量化设计[J]. 铁道学报, 2008, 30(5): 109-113.
DING Yanchuang, ZHAO Wenzhong. Light weight design of welded vehicle structure with fatigue damage constraints[J]. Journal of the China Railway Society, 2008, 30(5): 109-113.
International Union of Railways. Strength testing of 2 and 3-axle bogies on test rig: UIC 510-3-1994[S]. Paris: UIC, 1994.
British Standards Institution. Guide to fatigue design and assessment of steel products: BS 7608: 2014+A1:2015[S]. London: BSI, 2015.
MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics Trans, 1945, 12(3): 159-164.
尹增谦, 管景峰, 张晓宏, 等. 蒙特卡罗方法及应用[J]. 物理与工程, 2002, 12(3): 45-49.
YIN Zengqian, GUAN Jingfeng, ZHANG Xiaohong, et al. The monte Carlo method and its application[J]. Physics and Engineering, 2002, 12(3): 45-49.
李永华, 智鹏鹏, 宮琦, 等. 高速动车组轴箱轴承疲劳可靠性分析[J]. 计算机仿真, 2018, 35(3): 88-92.
LI Yonghua, ZHI Pengpeng, GONG Qi, et al. Fatigue reliability analysis for axle box bearing of high speed EMU[J]. Computer Simulation, 2018, 35(3): 88-92.
MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2012, 42(1): 55-61. DOI: 10.1080/00401706.2000.10485979http://doi.org/10.1080/00401706.2000.10485979.
熊俊涛, 乔志德, 韩忠华. 基于响应面法的跨声速机翼气动优化设计[J]. 航空学报, 2006, 27(3): 399-402.
XIONG Juntao, QIAO Zhide, HAN Zhonghua. Optimum aerodynamic design of transonic wing based on response surface methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3): 399-402.
姜衡, 管贻生, 邱志成, 等. 基于响应面法的立式加工中心动静态多目标优化[J]. 机械工程学报, 2011, 47(11): 125-133.
JIANG Heng, GUAN Yisheng, QIU Zhicheng, et al. Dynamic and static multi-objective optimization of a vertical machining center based on response surface method[J]. Journal of Mechanical Engineering, 2011, 47(11): 125-133.
0
浏览量
5
下载量
0
CSCD
2
CNKI被引量
关联资源
相关文章
相关作者
相关机构