1.重庆工商职业学院 智能制造与汽车学院,重庆 401520
2.西南交通大学 牵引动力国家重点实验室,四川 成都 610031
王茂辉(1988—),男,硕士研究生,研究方向为传动系统故障诊断;E-mail:2814641135@qq.com
扫 描 看 全 文
王茂辉, 汤勇, 李海翔, 等. 基于Morlet小波与尺度空间的滚动轴承故障诊断研究[J]. 机车电传动, 2021,(3):132-139.
Maohui WANG, Yong TANG, Haixiang LI, et al. Research on Fault Diagnosis of Rolling Bearing Based on Morlet Wavelet and Scale Space[J]. Electric Drive for Locomotives, 2021,(3):132-139.
王茂辉, 汤勇, 李海翔, 等. 基于Morlet小波与尺度空间的滚动轴承故障诊断研究[J]. 机车电传动, 2021,(3):132-139. DOI: 10.13890/j.issn.1000-128x.2021.03.103.
Maohui WANG, Yong TANG, Haixiang LI, et al. Research on Fault Diagnosis of Rolling Bearing Based on Morlet Wavelet and Scale Space[J]. Electric Drive for Locomotives, 2021,(3):132-139. DOI: 10.13890/j.issn.1000-128x.2021.03.103.
针对滚动轴承早期故障特征提取困难的问题,提出了一种基于Morlet小波与尺度空间的滚动轴承故障诊断方法。该方法先用尺度空间划分频带边界,得到共振频带,再把频带边界信息代入Morlet小波中构造滤波器组对信号进行滤波。由于尺度空间划分频带边界存在过分割的问题,引入了包络相关峭度作为指标,提出采用尺度空间优化谱的方法来识别故障的最优共振频带,用仿真信号和台架试验获得的轴承故障信号验证了该方法的有效性,并与快速谱峭度进行了对比。结果表明,基于Morlet小波与尺度空间的滚动轴承故障诊断方法可以准确地识别最优共振频带,实现轴承故障诊断,同时诊断效果明显优于快速谱峭度指标。
Aiming at the difficulty of extracting the early fault features of rolling bearings, a rolling bearing fault diagnosis method based on Morlet wavelet and scale space was proposed. The frequency band boundary was divided by the scale space to obtain the resonance frequency band, and the frequency band boundary information was substituted into Morlet wavelet to construct a filter bank to filter the signal. Due to the problem of over-segmentation of the scale space division frequency band boundary, the envelope correlation kurtosis was introduced as an index, and a scale space optimization spectrum method was proposed to identify the optimal resonance frequency band of the fault. The validity of the method was verified by simulation signals and bearing fault signals obtained from bench tests, and compared with the fast spectral kurtosis method. The results showed that this method could accurately identify the optimal resonance frequency band and realize bearing fault diagnosis. At the same time, the diagnosis effect was significantly better than fast spectral kurtosis index.
滚动轴承Morlet小波尺度空间故障诊断包络相关峭度快速谱峭度
rolling bearingMorlet waveletscale spacefault diagnosiscorrelation kurtosisfast spectral kurtosis
吴德华. 列车滚动轴承故障诊断与监测系统研究[D]. 长沙: 中南大学, 2005.
WU Dehua. Research on fault diagnosis and monitoring system for rolling bearings of trains[D]. Changsha: Central South University, 2005.
LI C S, LUO S H, COLE C, et al. An overview: modern techniques for railway vehicle on-board health monitoring systems[J]. Vehicle System Dynamics, 2017, 55(7): 1045-1070.
耿宇斌. 基于Morlet小波与SVD的旋转机械故障特征提取算法研究[D]. 广州: 华南理工大学, 2015.
GENG Yubin. Study on fault feature extraction algorithm of rotating machinery based on Morlet wavelet and SVD[D]. Guangzhou: South China University of Technology, 2015.
魏军辉, 冯昌林. 基于奇异值分解与最优Morlet小波的微弱故障特征提取方法研究[J]. 兵工学报, 2015, 36(增刊2): 215-219.
WEI Junhui, FENG Changlin. Fault feature extraction method based on SVD and optimal Morlet wavelet[J]. ACTA Armamentarii, 2015, 36(Suppl 2): 215-219.
GILLES J, HEAL K. A parameterless scale-space approach to find meaningful modes in histograms - application to image and spectrum segmentation[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2014, 12(6): 1-14.
BARSZCZ T, JABLONSKI A. A novel method for the optimal band selection for vibration signal demodulation and comparison with the kurtogram[J]. Mechanical Systems and Signal Processing, 2010, 25(1): 431-451.
张龙, 熊国良, 黄文艺. 复小波共振解调频带优化方法和新指标[J]. 机械工程学报, 2015, 51(3): 129-138.
ZHANG Long, XIONG Guoliang, HUANG Wenyi. New procedure and index for the parameter optimization of complex wavelet based resonance demodulation[J]. Journal of Mechanical Engineering, 2015, 51(3): 129-138.
陈祥龙, 冯辅周, 张兵志, 等. 基于平方包络谱相关峭度的最优共振解调诊断滚动轴承故障[J]. 机械工程学报, 2018, 54(21): 90-100.
CHEN Xianglong, FENG Fuzhou, ZHANG Bingzhi, et al. Rolling bearing fault diagnosis with optimal resonant frequency band demodulation based on squared envelope spectral correlated kurtosis[J]. Journal of Mechanical Engineering, 2018, 54(21): 90-100.
胡爱军, 赵军, 孙尚飞, 等. 基于相关峭度共振解调的滚动轴承复合故障特征分离方法[J]. 振动与冲击, 2019, 38(8): 110-116.
HU Aijun, ZHAO Jun, SUN Shangfei, et al. A compound fault feature separation method of rolling bearing based on correlation kurtosis resonance demodulation[J]. Journal of Vibration and Shock, 2019, 38(8): 110-116.
罗光坤. Morlet小波变换理论与应用研究及软件实现[D]. 南京: 南京航空航天大学, 2007.
LUO Guangkun. A study on Morlet wavelet transform theory and application with software implementation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007.
HE Wei, JIANG Zhinong, FENG Kun. Bearing fault detection based on optimal wavelet filter and sparse code shrinkage[J]. Measurement, 2009, 42(7): 1092-1102.
NIKOLAOU N G, ANTONIADIS I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelets[J]. Mechanical systems and signal processing, 2002, 16(4): 677-694.
CHEN Xianglong, ZHANG Bingzhi, FENG Fuzhou, et al. Optimal resonant band demodulation based on an improved correlated kurtosis and its application in bearing fault diagnosis[J]. Sensors, 2017, 17(2): 360.
MCDONALD G L, ZHAO Qing, ZUO M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012(33): 237-255.
0
浏览量
10
下载量
0
CSCD
4
CNKI被引量
关联资源
相关文章
相关作者
相关机构