1.株洲时代电子技术有限公司,湖南 株洲 412007
2.中国铁路南宁局集团有限公司 柳州工务机械段,广西 柳州 545007
刘洁(1980—),女,高级工程师,主要从事钢轨打磨技术研究;E-mail:liujie@csrzic.com
扫 描 看 全 文
刘洁, 郑涛. 基于比磨削能的中低速钢轨打磨技术研究[J]. 机车电传动, 2021,(3):32-36.
Jie LIU, Tao ZHENG. Research on Rail Grinding Technology of Medium and Low Speed Based on Specific Grinding Energy[J]. Electric Drive for Locomotives, 2021,(3):32-36.
刘洁, 郑涛. 基于比磨削能的中低速钢轨打磨技术研究[J]. 机车电传动, 2021,(3):32-36. DOI: 10.13890/j.issn.1000-128x.2021.03.006.
Jie LIU, Tao ZHENG. Research on Rail Grinding Technology of Medium and Low Speed Based on Specific Grinding Energy[J]. Electric Drive for Locomotives, 2021,(3):32-36. DOI: 10.13890/j.issn.1000-128x.2021.03.006.
为了提高钢轨打磨效率,依据现有机床加工磨削原理与高速切削比磨削能计算方法,开展中低速钢轨打磨切削量精准控制技术应用研究。以标准60N钢轨轨头廓面打磨为例,首先提取廓面几何特征并将其分为4个打磨区域,根据钢轨预打磨廓面比磨削能与切削量的经验关系,建立钢轨廓面各打磨区域切削量的经验计算模型,并通过现场打磨测试验证该计算模型的可行性和精准性。结果表明,经过3次打磨计算,钢轨轨头廓面区域2的磨削面积总量最大为7.28 mm,2,,区域3的磨削面积总量最小为1.18 mm,2,,并且现场打磨测试的总切削量与理论计算的相对偏差分别为-3.57%和-4.24%,磨削总量结果基本吻合,达到钢轨磨削精度要求。
In order to improve the efficiency of rail grinding, according to the existing machining and grinding principles of machine tools and the calculation method of high-speed cutting specific grinding energy, the application research of precision control technology for medium and low speed rail grinding was carried out. Taking the standard 60N rail profile grinding as an example, the geometric features of the profile surface were extracted and divided into four grinding areas. According to the empirical relationship between the rail pre-grinding profile surface ratio grinding energy and the amount of grinding, the empirical calculation model of the grinding amount of the rail profile surface is established, and the feasibility and accuracy of the calculation model were verified through on-site grinding tests. The results showed that after three grinding calculations, the maximum grinding amount of rail head profile area 2 was 7.28 mm,2, and the minimum grinding amount of area 3 was 1.18 mm,2, and the total cutting amount of the on-site grinding test was relative to the theoretical calculation. The deviations were -3.57% and -4.24%, respectively, and the total grinding results were consistent with the rail grinding accuracy requirements.
钢轨打磨比磨削能经验模型轨头轮廓磨削测试钢轨
rail grindingspecific grinding energyempirical modelrail head profilegrinding testrail
周坤, 王文健, 刘启跃, 等. 钢轨打磨机理研究进展及展望[J]. 中国机械工程, 2019, 30(3): 284-294.
ZHOU Kun, WANG Wenjian, LIU Qiyue, et al. Research progresses and prospect of rail grinding mechanism[J]. China Mechanical Engineering, 2019, 30(3): 284-294
樊文刚, 刘月明, 李建勇. 高速铁路钢轨打磨技术的发展现状与展望[J]. 机械工程学报, 2018, 54(22): 184-193.
FAN Wengang, LIU Yueming, LI Jianyong. Development status and prospect of rail grinding technology for high speed railway[J]. Journal of Mechanical Engineering, 2018, 54(22): 184-193.
ISHIDA M, AKAMA M, KASHIWAYA K, et al. The current status theory and practice on rail integrity in Japanese railways—rolling contact fatigue and corrugations[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(10): 909-919.
龚继军, 郭猛刚, 侯博, 等. 钢轨打磨技术发展现状及打磨策略探讨[J]. 机车电传动, 2020(3): 23-29.
GONG Jijun, GUO Menggang, HOU Bo, et al. Discussion on rail grinding technology development situation and grind strategies[J]. Electric Drive for Locomotives, 2020(3): 23-29.
梁德敏, 丘文生, 杨岳, 等. 采用打磨列车对高速铁路打磨的工艺探讨[J]. 企业技术开发, 2014, 33(16): 38-40.
LIANG Demin, QIU Wensheng, YANG Yue, et al. Rail grinding process research on high-speed railway by rail grinding train[J]. Technological Development of Enterprise, 2014, 33(16): 38-40.
陈经纬, 崔涛, 孙建锋, 等. 基于高速列车异常晃动的钢轨廓形打磨管理[J]. 机车电传动, 2020(5): 128-131.
CHEN Jingwei, CUI Tao, SUN Jianfeng, et al. Grinding management of rail profile based on abnormal hunting of high-speed train[J]. Electric Drive for Locomotives, 2020(5): 128-131.
金学松, 温泽峰, 王开云. 钢轨磨耗型波磨计算模型与数值方法[J]. 交通运输工程学报, 2005, 5(2): 12-18.
JIN Xuesong, WEN Zefeng, WANG Kaiyun. Theoretical model and numerical method of rail corrugation[J]. Journal of Traffic and Transportation Engineering, 2005, 5(2): 12-18.
周培, 刘铭, 王腾, 等. 基于几何配准的三维模型几何比对方法研究[J]. 图学学报, 2016, 37(4): 483-490.
ZHOU Pei, LIU Ming, WANG Teng, et al. Research on geometric comparison of 3D models based on geometric registration[J]. Journal of Graphics, 2016, 37(4): 483-490.
全顺喜. 60 kg/m钢轨和60N钢轨轮轨接触几何关系对比分析[J]. 铁道标准设计, 2017, 61(6): 38-43.
QUAN Shunxi. Comparison analysis of wheel-rail contact geometric relationship between 60 kg/m rail and 60N rail[J]. Railway Standard Design, 2017, 61(6): 38-43.
ZHAN Youji, TIAN Xiao, XU Yongchao, et al. Study on the specific grinding energy of cemented carbide (YG8)grinding with a vitrified diamond wheel in high speed regime[J]. International Journal of Abrasive Technology, 2019, 9(4): 286-302.
赵恒华, 孙顺利, 高兴军, 等. 超高速磨削的比磨削能研究[J]. 中国机械工程, 2006, 17(5): 453-456.
ZHAO Henghua, SUN Shunli, GAO Xingjun, et al. Study on specific grinding energy of ultra high speed grinding[J]. China Mechanical Engineering, 2006, 17(5): 453-456.
朱广平, 刘洁. 钢轨打磨车作业效率评估方法探讨[J]. 铁道建筑, 2018, 58(3): 103-105.
ZHU Guangping, LIU Jie. Discussion on rating method of working efficiency of rail grinding machine[J]. Railway Engineering, 2018, 58(3): 103-105.
钱源, 徐九华, 傅玉灿, 等. cBN砂轮高速磨削镍基高温合金磨削力与比磨削能研究[J]. 金刚石与磨料磨具工程, 2011, 31(6): 33-37.
QIAN Yuan, XU Jiuhua, FU Yucan, et al. Grinding force and specific grinding energy of nickel based superalloy during high speed grinding with cBN wheel[J]. Diamond & Abrasives Engineering, 2011, 31(6): 33-37.
肖杰灵, 刘学毅. 钢轨非对称廓型的设计方法[J]. 西南交通大学学报, 2010, 45(3): 361-365.
XIAO Jieling, LIU Xueyi. Design method of rail asymmetric silhouette[J]. Journal of Southwest Jiaotong University, 2010, 45(3): 361-365.
0
浏览量
6
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构