1.中国铁建电气化局集团第一工程有限公司,河南 洛阳 471013
侯绪永(1976—),男,高级工程师,主要从事铁路电气化方面的研究工作;E-mail:1929636215@qq.com
扫 描 看 全 文
侯绪永. 基于IK-means和CHMM的铁路接触网性能退化评估[J]. 机车电传动, 2021,(2):140-145.
Xuyong HOU. Assessment of Performance Degradation of Railway Catenary Based on IK-means and CHMM[J]. Electric Drive for Locomotives, 2021,(2):140-145.
侯绪永. 基于IK-means和CHMM的铁路接触网性能退化评估[J]. 机车电传动, 2021,(2):140-145. DOI: 10.13890/j.issn.1000-128x.2021.02.022.
Xuyong HOU. Assessment of Performance Degradation of Railway Catenary Based on IK-means and CHMM[J]. Electric Drive for Locomotives, 2021,(2):140-145. DOI: 10.13890/j.issn.1000-128x.2021.02.022.
了解铁路接触网的退化性能水平有助于保障机车的安全运行。为了提高传统K-means算法聚类的合理性和准确性,引入了密度值因子来提高数据聚类精度,称为IK-means算法。采用IK-means算法对高速铁路接触网进行模式划分,将铁路接触网的退化状态划分成正常状态、轻度退化、中度退化、重度退化和失效状态共5种状态,再采用隐马尔科夫(Hidden Markov Model, HMM)算法对铁路接触网的性能退化状态进行评估。仿真测试结果表明,评估精度平均高于92.67%,验证了所提方法的可靠性。
Understanding the degradation level of railway catenary is helpful to ensure the safe operation of locomotives. In order to improve the rationality and accuracy of the traditional K-means algorithm, the density value factor was introduced to improve the precision of data clustering, which called IK-means. The IK-means algorithm was used to divide high-speed railway catenary mode,which divided a railway catenary state of degradation into five types, including normal, mild degradation, moderate degradation, and severe degradation and failure state. The condition of the railway catenary degradation was assessed through CHMM. Simulation test results showed that the assessment accuracy was higher than 92.67%, which verified the reliability of the proposed method in this paper.
高速铁路接触网性能退化IK-means算法CHMM算法评估
high-speed railwaycatenaryperformance degradationIK-means algorithmCHMMassessment
杨广英, 徐超, 张海波, 等. 京沪高铁CTMH150接触线磨耗性能试验和分析[J]. 铁道技术监督, 2015, 43(5): 17-19.
YANG Guangying, XU Chao, ZHANG Haibo, et al. Test and analysis of abrasion performance of CTMH150 contact line on Beijing-Shanghai high-speed railway[J]. Railway Quality Control, 2015, 43(5): 17-19.
王振文. 高速铁路弓网系统动态性能评估[J]. 铁路技术创新, 2011(1): 70-71.
WANG Zhenwen. Assessment on dynamic performance of pantograph/catenary system for high speed railway[J]. Railway Technology Innovation, 2011(1): 70-71.
钱清泉, 高仕斌, 何正友, 等. 中国高速铁路牵引供电关键技术[J]. 中国工程科学, 2015(4): 9-20.
QIAN Qingquan, GAO Shibin, HE Zhengyou, et al. Study of China high-speed railway traction power supply key technology[J]. Engineering Science, 2015(4): 9-20.
CHOCJ , PARKY . New monitoring technologies for overhead contact line at 400 km·h-1[J]. Engineering, 2016, 2(3): 360-365.
刘志刚, 宋洋, 韩烨, 等. 高速铁路接触网研究进展[J]. 西南交通大学学报, 2016, 51(3): 495-518.
LIU Zhigang, SONG Yang, HAN Ye, et al. Advances of research on high-speed railway catenary[J]. Journal of Southwest Jiaotong University, 2016, 51(3): 495-518.
周能嘉, 程江洲, 李振华. 基于模糊神经网络的电气化铁路接触网安全评估[J]. 南昌大学学报, 2016, 40(2): 151-155.
ZHOU Nengjia, CHENG Jiangzhou, LI Zhenhua. On the safety evaluation for electrify railway catenary based on fuzzy neural network[J]. Journal of Nanchang University, 2016, 40(2): 151-155.
刘志刚, 韩志伟. 基于AR模型的电气化铁路接触网线谱研究[J]. 铁道学报, 2013, 35(12): 24-29.
LIU Zhigang, HAN Zhiwei. Study on electrical railway catenary line spectrum based on AR model[J]. Journal of the China Railway Society, 2013, 35(12): 24-29.
赵莉, 候兴哲, 胡君, 等. 基于改进k-means算法的海量智能用电数据分析[J]. 电网技术, 2014, 38(10): 2715-2720.
ZHAO Li, HOU Xingzhe, HU Jun, et al. Improved K-means algorithm based analysis on massive data of intelligent power utilization[J]. Power System Technology, 2014, 38(10): 2715-2720.
高国琴, 李明. 基于K-means算法的温室移动机器人导航路径识别[J]. 农业工程学报, 2014, 30(7): 25-33.
GAO Guoqin, LI Ming. Navigating path recognition for greenhouse mobile robot based on K-means algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(7): 25-33.
贾洪杰, 丁世飞, 史忠植. 求解大规模谱聚类的近似加权核k-means算法[J]. 软件学报, 2015, 26(11): 2836-2846.
JIA Hongjie, DING Shifei, SHI Zhongzhi. Approximate weighted kernel k-means for large-scale spectral clustering[J]. Journal of Software, 2015, 26(11): 2836-2846.
张凯, 齐丽娜. 基于连续隐马尔可夫模型的协作频谱检测[J]. 计算机技术与发展, 2015(6): 64-68.
ZHANG Kai, QI Lina. Cooperative spectrum detection based on CHMM[J]. Computer Technology and Development, 2015(6): 64-68.
沈杰, 王正群, 邹军, 等. 基于连续隐马尔可夫模型的人脸识别方法[J]. 计算机工程与设计, 2008, 29(3): 707-709.
SHEN Jie, WANG Zhenqun, ZOU Jun, et al. Approach of face recognition based on continuous hidden Markov model[J]. Computer Engineering and Design, 2008, 29(3): 707-709.
尹伊. 高速铁路接触网的性能退化评估[D]. 成都: 西南交通大学, 2018.
YIN Yi. Performance degradation evaluation of high speed railway catenary[D]. Chengdu: Southwest Jiaotong University, 2018.
秦晓宇, 施斌. 基于连续隐马尔科夫模型的高速铁路接触网性能退化分析[J]. 电气化铁道, 2018, 29(增刊1): 51-56.
QIN Xiaoyu, SHI Bin. Performance degradation analysis of high speed railway catenary based on CHMM[J]. Electric Railway, 2018, 29(Suppl 1): 51-56.
0
浏览量
6
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构