1.中车资阳机车有限公司 研发部,四川 资阳 641301
张志鸿(1989—),男,硕士,主要从事动力电池集成、内燃机车冷却系统设计;E-mail:15883233641@163.com
扫 描 看 全 文
张志鸿, 李廉枫, 徐华. 纯电动轨道工程车锂离子动力电池温升研究[J]. 机车电传动, 2021,(1):81-85.
Zhihong ZHANG, Lianfeng LI, Hua XU. Research of Temperature Rise in the Lithium-Ion Traction Battery of Engineering Vehicles[J]. Electric Drive for Locomotives, 2021,(1):81-85.
张志鸿, 李廉枫, 徐华. 纯电动轨道工程车锂离子动力电池温升研究[J]. 机车电传动, 2021,(1):81-85. DOI: 10.13890/j.issn.1000-128x.2021.01.015.
Zhihong ZHANG, Lianfeng LI, Hua XU. Research of Temperature Rise in the Lithium-Ion Traction Battery of Engineering Vehicles[J]. Electric Drive for Locomotives, 2021,(1):81-85. DOI: 10.13890/j.issn.1000-128x.2021.01.015.
为了探究轨道工程车动力电池温升特性,对电池在充放电倍率为0.5C和 1.0C时实测的生热功率数据进行二次函数拟合,得到了动力电池在不同荷电状态和充放电倍率时的生热功率。根据电池包传热特性和电池生热功率,对动力电池温度进行了计算。研究表明,在环境温度40 ℃条件下完成所选严苛线路的牵引时,电池温度为45 ℃;磷酸铁锂动力电池通过自然冷却能够满足轨道工程车低倍率放电、短时间运行和长时间停留使用的冷却需求。
In order to study the temperature characteristics of the power battery of engineering vehicles, the heating power of battery at different SOC and charge-discharge rate was obtained by performing quadratic function fitting on the data measured at the charge-discharge rate of 0.5C and 1.0C. The temperature rise of traction battery was studied according to the heat transfer characteristics and heating power of battery. The research shows that the battery temperature is 45 ℃ after completing the traction on the strict line when the environment temperature is 40 ℃. The lithium-ion power battery can meet the cooling requirements of low rate discharge, short time operation and longtime stay of the engineering vehicle by natural cooling.
轨道工程车锂离子动力电池城市轨道交通生热功率传热特性温升
engineering vehiclelithium-ion power batteryurban rail transitheating power of batteryheat transfer characteristicstemperature rise
谢潇怡, 王莉, 何向明, 等. 锂离子动力电池安全性问题影响因素[J]. 储能科学与技术, 2017, 6(1): 43-51.
XIE Xiaoyi, WANG Li, HE Xiangming, et al. The safety influencing factors of lithium batteries[J]. Energy Storage Science and Technology, 2017, 6(1): 43-51.
黄晨东, 杨勇, 荣佑民, 等. 锂离子动力电池系统安全性设计理念[J]. 中国汽车, 2018(8): 55-60.
HUANG Chendong, YANG Yong, RONG Youmin, et al. A safety design concept for propulsion lithium-ion battery system[J]. China Auto, 2018(8): 55-60.
何向明, 冯旭宁, 欧阳明高. 车用锂离子动力电池系统的安全性[J]. 科技导报, 2016, 34(6): 32-38.
HE Xiangming, FENG Xuning, OUYANG Minggao. On the safety issues of lithium ion battery[J]. Science & Technology Review, 2016, 34(6): 32-38.
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
FENG Xuning. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: test,modeling and prevention[D]. Beijing: Tsinghua University, 2016.
WEN Jianwu, YU Yan, CHEN Chunhua. A review on lithium-ion batteries safety issues: existing problems and possible solutions[J]. Materials express, 2012, 2(3): 197-212.
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of The Electrochemical Society, 1993, 140(6): 1526-1533.
SATO N. Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles[J]. Journal of Power Sources, 2001, 99(1/2): 70-77.
Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12.
LU Jiajia. The research and simulation analysis of heat dissipation with liquid cooling for the power battery pack of pure electric vehicles[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
张天时, 宋东鉴, 高青, 等. 动力电池组扁管束液流热管理增效[J]. 吉林大学学报(工学版), 2017, 47(4): 1032-1039.
ZHANG Tianshi, SONG Dongjian, GAO Qing, et al. Promotive effect on thermal management of power battery pack with liquid fl ow and fl at tube bank[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1032-1039.
李涛. 纯电动汽车锂离子电池热效应及电池组散热结构优化[D]. 重庆: 重庆大学, 2013.
LI Tao. Study on thermal effects of lithium-ion battery in electric vehicle and battery package dissipation structural optimization[D]. Chongqing: Chongqing University, 2013.
刘玮. 液冷式电池热管理系统换热特性与控制方法研究[D]. 长春: 吉林大学, 2017.
LIU Wei. Heat transfer analysis and control method research on liquid cooling system for power battery pack[D]. Changchun: Jilin University, 2017.
郭永兴. 锂离子动力电池制造关键技术基础及其安全性研究[D]. 长沙: 中南大学, 2010.
GUO Yongxing. Study on preparation and safety of lithium ion power batteries[D]. Changsha: Central South University, 2010.
李坤. 锂离子动力电池热—电化学耦合特性分析及有限元模拟[D]. 北京: 北京理工大学, 2016.
LI Kun. Study on electrochemical thermal analysis and finite element modelling for lithium ion power battery[D]. Bejing: Beijing Institute of Technology, 2016.
杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006.
YANG Shiming, TAO Wenquan. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006.
张剑波, 卢兰光, 李哲. 车用动力电池系统的关键技术与学科前沿[J]. 汽车安全与节能学报, 2012, 3(2): 87-104.
ZHANG Jianbo, LU Languang, LI Zhe. Key technologies and fundamental academic issues for traction battery systems[J]. Journal of Automotive Safety and Energy, 2012, 3(2): 87-104.
0
浏览量
10
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构