1.中车株洲电力机车研究所有限公司,湖南 株洲 412001
王雄(1982—),男,硕士,高级工程师,主要从事大功率变流热管理技术应用与研究。
扫 描 看 全 文
王雄, 吴智勇, 宋郭蒙, 等. 磁浮列车牵引变流器双面冷却热管散热器的性能研究[J]. 机车电传动, 2020,(6):70-74.
Xiong WANG, Zhiyong WU, Guomeng SONG, et al. Research on Heat Dissipation Performance of Double-sided Cooling Heat Pipe Radiator of Maglev Train[J]. Electric Drive for Locomotives, 2020,(6):70-74.
王雄, 吴智勇, 宋郭蒙, 等. 磁浮列车牵引变流器双面冷却热管散热器的性能研究[J]. 机车电传动, 2020,(6):70-74. DOI: 10.13890/j.issn.1000-128x.2020.06.015.
Xiong WANG, Zhiyong WU, Guomeng SONG, et al. Research on Heat Dissipation Performance of Double-sided Cooling Heat Pipe Radiator of Maglev Train[J]. Electric Drive for Locomotives, 2020,(6):70-74. DOI: 10.13890/j.issn.1000-128x.2020.06.015.
针对传统热管散热器结构无法满足磁浮列车牵引变流器散热要求的现状,提出一种适用高热流密度的双面冷却热管散热器。通过应用数值仿真和试验测试的研究方法,将双面冷却热管散热器与体积相同的TM36型材散热器和CRH2高速动车组用热管散热器进行对比。结果表明,在相同风量和功率下,双面冷却热管散热器相对于体积相近的TM36型材散热器的散热效率提升32%,风阻降低35%,与CRH2高速动车组用热管散热器性能基本一致,但可节约成本和空间达50%以上。
In view of the current situation that the traditional heat pipe radiator structure cannot meet the heat dissipation requirements of the maglev train traction converter, a double-sided cooling heat pipe radiator was proposed suitable for high heat flux density. The research methods of numerical simulation and experimental testing were used to compare the double-sided heat pipe radiator with the same volume TM36 profile radiator and CRH2 high-speed EMUs heat pipe radiator. The results showed that under the same air volume and power, the heat dissipation efficiency of double-sided heat pipe radiators with similar volumes of TM36 profile radiators was increased by 32% while the wind resistance was reduced by 35%, the heat dissipation performance of the heat pipe radiators for CRH2 high-speed EMUs was almost the same, but the cost and space could be saved by more than 50%.
磁浮列车热管散热器双面冷却数值仿真IGBT
maglev trainheat pipe radiatordouble-sided coolingnumerical simulationIGBT
杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 497-507.
PEREL'MAN T L, LEVITAN M M. Fundamental theory of heat pipes[J]. Journal of Engineering Physics, 1973, 25(5): 1366-1373.
CHAROENSAWAN P, KHANDEKAR S, GROLL M, et al. Closed loop pulsating heat pipes: Part A: parametric experimental investigations[J]. Applied Thermal Engineering, 2003, 23(16): 2009-2020.
PASTUKHOV V G, MAIDANIK Y F, VERSHININ C V, et al. Miniature loop heat pipes for electronics cooling[J]. Applied Thermal Engineering, 2003, 23(9): 1125-1135.
VASILIEV L L. Micro and miniature heat pipes – Electronic component coolers[J]. Applied Thermal Engineering, 2008, 28(4): 266-273.
POSSAMAL F C, SETTER I, VASILIEV L L. Miniature heat pipes as compressor cooling devices[J]. Applied Thermal Engineering, 2009, 29(14/15): 3218-3223.
贺荣, 周乃君, 李春阳. CRH2高速动车组CI用热管散热器数值模拟与试验研究[J]. 中南大学学报(自然科学版), 2014, 45(10): 3645-3650.
宋郭蒙, 王雄, 王幸智, 等. 基于高效扰流技术的IGBT双面冷却散热器性能优化研究[J]. 机车电传动, 2020 (1): 22-27.
任艳, 彭琦, 于迪, 等. 基于加速寿命试验的IGBT可靠性预计模型研究[J]. 电力电子技术, 2017, 51(5): 121-124.
HELD M, JACOB P, NICOLETTI G, et al. Fast power cycling test for IGBT modules in traction application[C]//IEEE. Proceedings of Second International Conference on Power Electronics and Drive Systems. Singapore: IEEE, 1997, 1: 425-430. DOI: 10.1109/PEDS.1997.618742http://doi.org/10.1109/PEDS.1997.618742.
0
浏览量
3
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构