1.石家庄铁道大学,河北 石家庄 050043
2.中车山东机车车辆有限公司,山东 济南 250000
3.中车工业研究院有限公司,北京 100070
刘鹏飞(1986—),男,博士,副教授,现从事机车车辆动力学、列车轨道耦合动力学相关研究工作。
扫 描 看 全 文
刘鹏飞, 罗林涛, 闫一凡, 等. 高速磁浮单车模型与列车模型动力学性能仿真对比[J]. 机车电传动, 2020,(6):30-37.
Pengfei LIU, Lintao LUO, Yifan YAN, et al. Dynamic Performance Comparisons of High-speed Maglev Single Vehicle Model and Marshalling Train Model[J]. Electric Drive for Locomotives, 2020,(6):30-37.
刘鹏飞, 罗林涛, 闫一凡, 等. 高速磁浮单车模型与列车模型动力学性能仿真对比[J]. 机车电传动, 2020,(6):30-37. DOI: 10.13890/j.issn.1000-128x.2020.06.007.
Pengfei LIU, Lintao LUO, Yifan YAN, et al. Dynamic Performance Comparisons of High-speed Maglev Single Vehicle Model and Marshalling Train Model[J]. Electric Drive for Locomotives, 2020,(6):30-37. DOI: 10.13890/j.issn.1000-128x.2020.06.007.
以高速磁浮列车为研究对象,建立了单车与列车多体动力学模型,设置了不同速度下的直线和平面曲线的线路考核工况,研究了磁浮单车模型和列车模型在高速走行条件下的动力学性能,从悬浮与导向能力、振动水平等角度对建模方法带来的动力学差异进行了分析。研究表明,车间动态耦合作用主要影响着车辆的悬浮性能;在直线线路上,列车模型计算的悬浮力和悬浮间隙相比于单车模型最大增幅分别可达5 kN和0.4 mm;在曲线运行条件下,列车模型悬浮力与车体垂向加速度相比于单车模型分别增大了约5 kN和 0.09 m/s,2,;不同建模方式对磁浮车辆的横向动力作用及振动水平影响较小。
Taking the high-speed maglev train as research object, the multi-body dynamic model of single vehicle and marshaling train were established. For the different running speeds, the line evaluation conditions of straight line and horizontal curves were set. The dynamic performances of maglev single vehicle model and train model were investigated under high-speed running conditions. The dynamic difference induced by the modeling method was analyzed from the aspects of levitation and guidance ability, vibration level and so on. The research showed that, the dynamic coupling effect between vehicles mainly affected the levitation performance. On straight line, the maximum increases of levitation force and gap calculated by the train model could reach 5 kN and 0.4 mm respectively compared with that of the single-vehicle model. In curve negotiation condition, the levitation force and carbody vertical acceleration obtained from the train model increased by about 5 kN and 0.09 m/s,2, respectively with respect to that of the single-vehicle model. The different modeling methods had little influence on the lateral dynamic interaction and vibration level of maglev vehicle.
磁浮列车动力学性能曲线通过仿真分析
maglev traindynamic performancecurving negotiatesimulation
肖乾, 许旭, 陈光圆. 磁悬浮列车动力学研究方法综述[J]. 华东交通大学学报, 2019, 36(1): 25-32.
张波, 蒋忠诚. 磁浮车辆动力学评估技术的发展与展望[C]//中国电工技术学会轨道交通电气设备技术专业委员会. 第三届轨道交通电气与信息技术国际学术会议(EITRT 2017). 北京: 中国电工技术学会轨道交通电气设备技术专业委员会, 2017: 57-65.
德米特里· 波戈列洛夫, 雷强, 根纳季· 米克希夫, 等. 基于UM的磁浮列车-轨道梁耦合振动仿真程序开发[J]. 计算机辅助工程, 2019, 28(1): 28-35.
李辉柏, 黄靖宇. 高速磁浮线路平曲线最小半径优化分析[C]//中国智能交通协会. 第十四届中国智能交通年会论文集. 北京: 中国智能交通协会, 2019: 78-88.
梁鑫. 磁浮列车车轨耦合振动分析及试验研究[D]. 成都: 西南交通大学, 2015.
赵春霞. EMS型高速磁浮列车导向动力学研究[D]. 长沙: 国防科学技术大学, 2017.
汪科任, 罗世辉, 宗凌潇, 等. 新型磁浮车动力学仿真分析[J]. 振动与冲击, 2017, 36(20): 23-29.
贺光. EMS型中速磁浮列车动力学建模与导向能力研究[D]. 长沙: 国防科学技术大学, 2018.
黎松奇, 张昆仑. 基于悬浮控制算法的磁浮列车动力学仿真研究[J]. 系统仿真学报, 2015, 27(1): 179-184.
闫一凡, 齐洪峰, 罗林涛, 等. 基于UM的高速磁浮车辆刚柔耦合建模及振动传递规律研究[J]. 铁道机车车辆, 2019, 39(5): 59-64.
SHI J, FANG W S, WANG Y J, et al. Measurements and analysis of track irregularities on high speed maglev lines[J]. Journal of Zhejiang University SCIENCE A, 2014, 15(6): 385-394.
国家铁路局. 磁浮铁路技术标准(试行): TB 10630—2019[S]. 北京: 中国铁道出版社, 2019.
0
浏览量
3
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构