1.兰州交通大学 甘肃省轨道交通力学应用工程实验室,甘肃 兰州 730070
2.中车青岛四方机车车辆股份有限公司,山东 青岛 266111
张志超(1994—),男,硕士研究生,研究方向轨道交通空气动力学。
扫 描 看 全 文
张志超, 杜健, 杜俊涛, 等. 速度600 km/h单列磁浮列车通过隧道时压力载荷特征研究[J]. 机车电传动, 2020,(6):15-19.
Zhichao ZHANG, Jian DU, Juntao DU, et al. Research on Pressure Load Characteristics of 600 km/h Single Maglev Train Passing Through Tunnel[J]. Electric Drive for Locomotives, 2020,(6):15-19.
张志超, 杜健, 杜俊涛, 等. 速度600 km/h单列磁浮列车通过隧道时压力载荷特征研究[J]. 机车电传动, 2020,(6):15-19. DOI: 10.13890/j.issn.1000-128x.2020.06.004.
Zhichao ZHANG, Jian DU, Juntao DU, et al. Research on Pressure Load Characteristics of 600 km/h Single Maglev Train Passing Through Tunnel[J]. Electric Drive for Locomotives, 2020,(6):15-19. DOI: 10.13890/j.issn.1000-128x.2020.06.004.
列车由明线高速行驶突入隧道的瞬间,列车周围的空气流动空间骤然变小,车头前方的空气受到压缩压力急剧升高,形成初始压缩波,并以当地声速向隧道出口端传播。当列车尾部进入隧道时,由于列车尾部占据的空间得以释放,空气压力突然降低,形成膨胀波。压缩波与膨胀波传播到隧道端口被反射为具有相反性质的波,两者相互叠加,导致隧道内产生剧烈的压力波动。文章采用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线方法对速度600 km/h单列磁浮列车通过隧道时压力波问题进行数值模拟研究,通过对隧道内压力变化形成原理的分析,揭示了隧道内气动载荷的变化特性,以及车体表面压力幅值和隧道长度、列车速度、阻塞比之间的变化规律。研究结果可为高速磁浮列车通过隧道时洞内和车体气动载荷设计提供数据参考。
In an instant, when the train enters the tunnel from the open line, the air flow space around the train suddenly becomes smaller, and the air in front of the train is compressed and the air pressure increases sharply, forming an initial compression wave, which propagates to the tunnel exit at the local sound speed. When the rear of the train entered the tunnel, as the space occupied by the rear of the train was released, the air pressure suddenly dropped, forming an expansion wave. Compression waves and expansion waves propagated to the tunnel port and were reflected as waves with opposite properties. The two superimpose on each other, resulting in severe pressure fluctuations in the tunnel. The one-dimensional unsteady compressible non-homentropic flow model and generalized Riemann variable characteristic line method were used to numerically simulate the pressure wave of the maglev train passing through tunnel at a speed of 600 km/h. Through the analysis of the formation mechanism of pressure changes in the tunnel, the changing characteristics of the aerodynamic load in the tunnel was revealed, as well as the changing law between the amplitude of the surface pressure of the car body and the length of the tunnel, train speed, and blocking ratio. The research results could provide data reference for the design of aerodynamic loads in the tunnel and car body when the high-speed maglev train passes through the tunnel.
高速磁浮列车隧道压力波压力载荷一维流动模型特征线法
high-speed maglev traintunnelpressure wavepressure loadone-dimensional flow modelcharacteristic line method
田红旗. 中国高速轨道交通空气动力学研究进展及发展思考[J]. 中国工程科学, 2015, 17(4): 30-41.
BAKER C J. A review of train aerodynamics Part 1–Fundamentals[J]. The Aeronautical Journal, 2014, 118(1201): 201-228.
RAVN S, REINKE P. Tunnel aerodynamics of the magnetic levitation high-speed link in Munich (MAGLEV)–consequences for pressure comfort, micro pressure waves, traction power and pressure loads[J]. Tunnel Management International Journal, 2006, 9(1): 1-10.
HOWELL J P. Aerodynamic response of maglev train models to a crosswind gust[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 22(2/3): 205-213.
TIELKES T. Aerodynamic aspects of maglev systems[C]//IEEJ. MAGLEV'2006: The 19th International Conference on Magnetically Levitated Systems and Linear Drives. Dresden: IEEJ, 2006: 641-689.
YAMAMOTO K, KOZUMA Y, TAGAWA N, et al. Improving maglev vehicle characteristics for the Yamanashi test line[J]. Quarterly Report of RTRI, 2004, 45(1): 7-12.
山崎幹男, 加藤覚, 若原敏裕, 等. 超高速鉄道トンネル内の圧力変動に対する覆工構造の設計[J]. 土木学会論文集, 2004, 752: 119-131. doi: 10.2208/jscej.2004.752_119http://doi.org/10.2208/jscej.2004.752_119.
TAKAHASHI K, HONDA A, NOZAWA K, et al. Reduction of a micro-pressure wave by a round hood at a tunnel portal of a high-speed railway[J]. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering), 2015, 71(2): 167-172.
HONDA A, TAKAHASHI K, NOZAWA K, et al. Proposal of a porous hood for a high-speed railway tunnel based on an evaluation of a micro-pressure wave[J]. Journal of Japan Society of Civil Engineers, Ser. A1 (Structural Engineering & Earthquake Engineering), 2015, 71(3): 327-340.
SAITO S, IIDA M, KAJIYAMA H. Numerical simulation of 1-D unsteady compressible flow in railway tunnels[J]. Journal of Environment and Engineering, 2011, 6(4): 723-738.
梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009: 65-94.
毕海权, 雷波, 张卫华. 高速磁浮列车会车压力波数值计算研究[J]. 空气动力学学报, 2006, 24(2): 213-217.
HUANG S, LI Z W, YANG M Z. Aerodynamics of high-speed maglev trains passing each other in open air[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 151-160.
谈畅达, 周丹. 编组长度对磁浮车边界层及尾流流动的影响[C]//中国力学学会. 中国力学大会论文集(CCTAM 2019). 杭州: 中国力学学会, 2019: 925-933.
王兆祺, 赵毅山. 磁悬浮列车通过隧道时空气阻力的计算方法[J]. 同济大学学报(自然科学版), 2003, 31(10): 1183-1187.
0
浏览量
3
下载量
0
CSCD
2
CNKI被引量
关联资源
相关文章
相关作者
相关机构