1.中车株洲电力机车研究所有限公司,湖南 株洲 412001
2.株洲中车时代电气股份有限公司,湖南 株洲 412001
黄南(1983—),男,硕士,高级工程师,研究方向为大功率变流技术与应用。
扫 描 看 全 文
黄南, 吴智勇, 王雄, 等. 基于SiC模块的地铁走行风冷系统设计[J]. 机车电传动, 2020,(5):62-66.
Nan HUANG, Zhiyong WU, Xiong WANG, et al. Design of Running Air-cooling System for Subway Based on SiC Module[J]. Electric Drive for Locomotives, 2020,(5):62-66.
黄南, 吴智勇, 王雄, 等. 基于SiC模块的地铁走行风冷系统设计[J]. 机车电传动, 2020,(5):62-66. DOI: 10.13890/j.issn.1000-128x.2020.05.014.
Nan HUANG, Zhiyong WU, Xiong WANG, et al. Design of Running Air-cooling System for Subway Based on SiC Module[J]. Electric Drive for Locomotives, 2020,(5):62-66. DOI: 10.13890/j.issn.1000-128x.2020.05.014.
SiC器件凭借高开关频率和低损耗的性能优势,在新一代地铁变流器中日益受到重视,并逐步得到推广应用。针对基于SiC器件的地铁变流器模块,对其走行风冷散热系统进行设计,搭建了大风道试验平台模拟走行风冷,并通过对地铁车辆底部实物建模仿真,对比验证大风道试验的可行性和准确性,同时分析了车体布局对散热性能的影响,为地铁走行风冷散热系统的设计提供指导性建议。
With the advantages of high switching frequency and low loss, SiC devices have been paid more and more attention in the new generation of metro converters, and have been gradually popularized and applied. Aiming at SiC-device-based metro converter module, the running air-cooling system was designed, and the wind tunnel test platform was built to simulate the running air cooling. Through the modeling and simulation of the subway vehicle bottom objects, the feasibility and accuracy of the wind tunnel test were compared and verified. At the same time, the influence of the car body layout on the heat dissipation performance was analyzed, which provided guidance for the design of the subway running air cooling system.
地铁车辆SiC热管散热器数值仿真走行风冷
subway vehicleSiCheat pipe radiatornumerical simulationrunning air-cooling
高云斌, 李诚瞻, 蒋华平. SiC MOSFET芯片设计关键技术及发展趋势[J]. 大功率变流技术, 2017 (1): 33-38.
SASAKI K, SATO S, MATSUI K, et al. 40 kW/L high switching frequency three-phase AC 400 V all-SiC inverter[J]. Materials Science Forum, 2013, 740/741/742: 1081-1084.
KATO F, NAKAGAWA H, YAMAGUCHI H, et al. High-temperature transient thermal analysis for SiC power modules[J]. Materials Science Forum, 2016, 858: 1078-1081.
KATO F, REJEKI S, LANG F, et al. 250℃-Operated sandwich-structured all-SiC power module[J]. Japanese Journal of Applied Physics, 2015, 54: 04DP06. DOI: 10.7567/JJAP.54.04DP06http://doi.org/10.7567/JJAP.54.04DP06.
ANZAI T, MURAKAMI Y, SATO S, et al. Sandwich structured power module for high temperature SiC power semiconductor devices[J]. International Symposium on Microelectronics, 2014 (1): 757-762.
HULL B A, HENNING J, JONAS C, et al. 1700V 4H-SiC MOSFETs and schottky diodes for next generation power conversion applications[C]//IEEE. 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). Fort Worth: IEEE, 2011: 1042-1048. DOI: 10.1109/APEC.2011.5744723http://doi.org/10.1109/APEC.2011.5744723.
潘三博, 郝夏斐. 采用碳化硅器件的高效率光伏逆变器研究[J]. 制造业自动化, 2011, 33(8): 131-133.
BRENNA M, FOIADELLI F, ZANINELLI D, et al. Application prospective of silicon carbide (SiC) in railway vehicles[C]//IEEE. 2014 AEIT Annual Conference - From Research to Industry: The Need for a More Effective Technology Transfer. Trieste: IEEE, 2014: 1-6. DOI: 10.1109/AEIT.2014.7002062http://doi.org/10.1109/AEIT.2014.7002062.
WATANABE T. Trend of railway technologies and power semiconductor devices[C]//IEEE. 11th International Symposium on Power Semiconductor Devices and ICs. Toronto: IEEE, 1999: 11-18. DOI: 10.1109/ISPSD.1999.764032http://doi.org/10.1109/ISPSD.1999.764032.
ISHIKAWA K, YUKUTAKA S, OGAWA K, et al. Traction inverter that applies compact 3.3 kV/1200 A SiC hybrid module[C]//IEEE. 2014 International Power Electronics Conference. Hiroshima: IEEE,2014: 2140-2144. DOI: 10.1109/IPEC.2014.6869884http://doi.org/10.1109/IPEC.2014.6869884.
0
浏览量
4
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构