1.中车株洲电力机车研究所有限公司,湖南 株洲 412001
何凯(1988—),男,博士,工程师,主要从事电力电子领域热管理技术研究与工程化工作。
扫 描 看 全 文
何凯, 王幸智, 田恩, 等. 新一代高压SiC器件在轨道交通牵引系统应用中的热管理技术[J]. 机车电传动, 2020,(5):56-61.
Kai HE, Xingzhi WANG, En TIAN, et al. Thermal Management Technology of New-generation High-voltage SiC Devices Applied in Rail Transit Traction System[J]. Electric Drive for Locomotives, 2020,(5):56-61.
何凯, 王幸智, 田恩, 等. 新一代高压SiC器件在轨道交通牵引系统应用中的热管理技术[J]. 机车电传动, 2020,(5):56-61. DOI: 10.13890/j.issn.1000-128x.2020.05.013.
Kai HE, Xingzhi WANG, En TIAN, et al. Thermal Management Technology of New-generation High-voltage SiC Devices Applied in Rail Transit Traction System[J]. Electric Drive for Locomotives, 2020,(5):56-61. DOI: 10.13890/j.issn.1000-128x.2020.05.013.
以SiC为代表的宽禁带器件正成为功率半导体器件的研究热点,新一代高压封装是大功率SiC器件为应对高压、散热和并联使用而研制的主要封装形式。文章针对新一代高压SiC器件的封装结构特征、电流密度、动静态损耗参数、热阻、结温等关键热性能参数,与传统Si基器件进行对比分析,基于牵引系统典型静态工况和动态工况,全面对比2种类型器件在相同工况下的损耗、结温和温度应力谱。结果表明,SiC器件具备更高的电流通流能力和更高的效率,但也存在“结-壳”热阻和界面热阻更高、散热功率密度更高、器件许用结温未大幅度提升等不足。在实际应用中,需要全面考虑电路拓扑、电流利用率、开关频率和热管理系统方案,保证SiC器件的优势得到有效发挥。
The wide band-gap devices represented by SiC are becoming the research focus of power semiconductor devices. The new generation of high-voltage packaging is the main packaging form for high-power SiC devices to cope with high-voltage, heat dissipation and parallel use. In this paper, the key thermal performance parameters of the new generation of high-voltage packaging SiC devices, such as packaging structure characteristics, current density, dynamic and static loss parameters, thermal resistance, and junction temperature were compared with those of traditional Si based devices. Based on the typical static and dynamic conditions of traction system, the loss, junction temperature and temperature stress spectrum of the two types of devices under the same working conditions were comprehensively compared. The results showed that SiC devices have higher current carrying capacity and higher efficiency, but there are also some shortcomings, such as higher junction shell thermal resistance and interface thermal resistance, higher heat dissipation power density and lower allowable junction temperature. In practical application, it is necessary to consider circuit topology, current utilization, switching frequency and thermal management system to ensure that the advantages of SiC devices can be brought into full play.
变流技术高压封装SiC热阻损耗结温
converter technologyhigh voltage packageSiCthermal resistancelossjunction temperature
漆宇, 窦泽春, 丁荣军. 轨道交通用功率半导体器件应用技术的研究[J]. 机车电传动, 2020 (1): 1-8.
SATO K, KATO H, FUKUSHIMA T. Development of SiC applied traction system for Shinkansen high-speed train[C]//IEEE. 2018 International Power Electronic Conference. Niigata: IEEE, 2018: 3478-3483. DOI: 10.23919/IPEC.2018.8507486http://doi.org/10.23919/IPEC.2018.8507486.
HADAMA K, HINO S, MIURA N, et al. 3.3 kV/1 500 A power modules for the world’s first all-SiC traction inverter[J]. Japanese Journal of Applied Physics, 2015, 54: 04DP07. DOI: 10.7567/JJAP.54.04DP07http://doi.org/10.7567/JJAP.54.04DP07.
LIU G Y, WU Y B, LI K J, et al. Development of high power SiC devices for rail traction power systems[J]. Journal of Crystal Growth, 2019, 507: 442-452. DOI: 10.1016/j.jcrysgro.2018.10.037http://doi.org/10.1016/j.jcrysgro.2018.10.037.
安德烈亚斯· 福尔克, 麦克尔· 郝康普. IGBT模块:技术、驱动和应用[M]. 韩金刚,译. 北京: 机械工业出版社, 2016.
NEAMAN D A. 半导体物理与器件[M]. 赵毅强, 姚素英, 史再峰,译. 北京: 电子工业出版社, 2013.
LUTZ J, SCHLANGENOTTO H, SCHEUERMANN U, et al. 功率半导体器件——原理、特性和可靠性[M]. 卞抗, 杨莺, 刘静,译. 北京: 机械工业出版社, 2013.
饶沛南. 大功率交流传动机车牵引变流器的研究与开发[D]. 成都: 西南交通大学, 2011.
饶沛南, 姚中红, 李鹏, 等. HXD1C型机车牵引变流器及控制系统[J]. 电力机车与城轨车辆, 2011, 34(6): 4-6.
荣智林, 忻力, 陈燕平, 等. TGA6型主辅一体化IGBT变流器[J]. 机车电传动, 2010 (5): 25-28.
李忻, 周望君, 奉琴, 等. IGBT模块热特性测量与内部结构热特性分析[J]. 大功率变流技术, 2016 (2): 26-29.
李彦涌, 忻力, 赖伟, 等. 基于现场数据的IGBT结温实时计算[J]. 大功率变流技术, 2017 (1): 24-28.
王存乐. IGBT模块热结构建模及其老化的研究[D]. 天津: 河北工业大学, 2020.
傅航杰, 刘文业, 李彦涌, 等. 实时雨流法及其在IGBT寿命预测中的应用研究[J]. 大功率变流技术, 2017 (3): 8-12.
0
浏览量
10
下载量
0
CSCD
2
CNKI被引量
关联资源
相关文章
相关作者
相关机构