1.广西大学 机械工程学院,广西 南宁 530004
2.中车株洲电力机车研究所有限公司,湖南 株洲 412001
柳国强(1996—),男,硕士研究生,研究方向为列车通信网络。
扫 描 看 全 文
柳国强, 贺德强, 陈彦君, 等. 基于云模型和组合赋权法的列车通信网络性能评估[J]. 机车电传动, 2020,(4):128-132.
Guoqiang LIU, Deqiang HE, Yanjun CHEN, et al. Performance Evaluation of Train Communication Network Based on Cloud Model and Combination Weighting Method[J]. Electric Drive for Locomotives, 2020,(4):128-132.
柳国强, 贺德强, 陈彦君, 等. 基于云模型和组合赋权法的列车通信网络性能评估[J]. 机车电传动, 2020,(4):128-132. DOI: 10.13890/j.issn.1000-128x.2020.04.113.
Guoqiang LIU, Deqiang HE, Yanjun CHEN, et al. Performance Evaluation of Train Communication Network Based on Cloud Model and Combination Weighting Method[J]. Electric Drive for Locomotives, 2020,(4):128-132. DOI: 10.13890/j.issn.1000-128x.2020.04.113.
针对列车通信网络性能评估缺少量化评估的问题,提出了基于云模型和组合赋权法的列车通信网络评估方法。首先,建立列车通信网络性能评价体系和Opnet仿真平台,采用组合赋权法确定综合权重;然后,采用云模型生成评价云,根据综合权重和逆向云算法得到综合云;最后,将列车通信网络性能综合云与评价云进行相似性度量,实现列车通信网络性能的评价。通过算例分析表明,该方法能够客观有效地评估列车通信网络性能,为列车通信网络的性能评估提供了理论参考。
In the view of the lack of quantitative assessment in the performance assessment of the train communication network, a train communication network evaluation method, based on cloud model and combination weighting method, was proposed in this paper. Firstly, the performance evaluation system of train communication network and Opnet simulation platform were established, and the comprehensive weight was determined by the combination weighting method; Secondly, the evaluation cloud was generated by the cloud model, and the comprehensive cloud was obtained according to the comprehensive weight and the reverse cloud algorithm; Finally, the similarity between the comprehensive cloud of train communication network performance and the evaluation cloud was measured to realize the evaluation of train communication network performance. The example shows that the method could evaluate the performance of train communication network objectively and effectively, which provides a theoretical reference for the performance evaluation of train communication network.
网络性能评估列车通信网络云模型组合赋权法
network performance evaluationtrain communication networkcloud modelcombination weighting method
张玉琢, 曹源, 闻映红. 基于交换式以太网的列车通信网络建模与性能分析[J]. 通信学报, 2015, 36(9): 181-187.
王涛, 王立德, 周洁琼, 等. 基于交换式以太网的列车通信网络实时性研究[J]. 铁道学报, 2015, 37(4): 39-45.
周洁琼, 王立德, 王涛, 等. 基于虚拟链路交换式以太网的列车通信网络可靠性分析[J]. 铁道学报, 2014, 36(2): 55-61.
诸葛暄雨, 郭其一, 王梦超. 列车通信网络可靠性评价技术研究[J]. 机车电传动, 2017 (4): 9-14.
靳建宇, 王立德, 简捷, 等. 列车通信网络并行冗余方法与协议的研究[J]. 铁道学报, 2017, 39(12): 76-85.
WU S F, WANG M Q, ZOU Y T. Bidirectional cognitive computing method supported by cloud technology[J]. Cognitive System Research, 2018, 52: 615-621.
YAO J P, WANG G Q, XUE B L, et al. Assessment of lake eutrophication using a novel multidimensional similarity cloud model[J]. Journal of Environmental Management, 2019, 248: 109259. DOI: 10.1016/j.jenvman.2019.109259http://doi.org/10.1016/j.jenvman.2019.109259.
FU Q, MENG F X, LI T X, et al. Cloud model-based analysis of regional sustainable water resource utilization schemes[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(5): 67-75.
杨洁, 王国胤, 刘群, 等. 正态云模型研究回顾与展望[J]. 计算机学报, 2018, 41(3): 724-744.
SUN X L, HU Z Y, LI M, et al. Optimization of pollutant reduction system for controlling agricultural non-point-source pollution based on grey relational analysis combined with analytic hierarchy process[J]. Journal of Environment Management, 2019, 243: 370-380.
宋河, 黄元生, 黄沈海, 等. 基于标度扩展AHP法的电厂选址研究[J]. 华北电力大学学报(自然科学版), 2014, 41(6): 75-79.
MENG Y, NI F Q, DENG Y, et al. Ecological risk assessment of water resources in Ya'an city based on EWM-TOPSIS[J]. EKOLOJI, 2018, 27(106): 1765-1774.
李晓天. 基于几何本征子空间框架的原子结构表征法[D]. 广州: 华南理工大学, 2018.
DUBI L K Y, MUNIYANDI R C. Performance investigation of VoIP over mobile WiMAX networks through OPNET simulation[J]. International Journal of Advanced Computer Science and Applications, 2019, 10(1): 148-152.
EBADI M, SOLTANPOUR F. A class of convergent series with golden ratio based on fi bonacci sequence[J]. Sahand Communications in Mathematical Analysis, 2019, 13(1): 115-127.
付凯, 夏靖波, 韦泽鲲, 等. 基于相互隶属度的云模型相似性度量方法[J]. 北京理工大学学报, 2018, 38(4): 405-411.
0
浏览量
6
下载量
0
CSCD
8
CNKI被引量
关联资源
相关文章
相关作者
相关机构