1.西南交通大学 牵引动力国家重点实验室,四川 成都 610031
2.西南交通大学 机械工程学院,四川 成都 610031
王波(1988—),男,博士,研究方向为轨道车辆动力学。
扫 描 看 全 文
王波, 罗世辉, 孙琦, 等. EMS型磁浮列车车体响应与轨道不平顺的相干性分析[J]. 机车电传动, 2020,(2):113-117.
Bo WANG, Shihui LUO, Qi SUN, et al. Coherence Analysis between Vehicle Vibration Response of EMS Maglev Vehicles and Track Irregularities[J]. Electric Drive for Locomotives, 2020,(2):113-117.
王波, 罗世辉, 孙琦, 等. EMS型磁浮列车车体响应与轨道不平顺的相干性分析[J]. 机车电传动, 2020,(2):113-117. DOI: 10.13890/j.issn.1000-128x.2020.02.114.
Bo WANG, Shihui LUO, Qi SUN, et al. Coherence Analysis between Vehicle Vibration Response of EMS Maglev Vehicles and Track Irregularities[J]. Electric Drive for Locomotives, 2020,(2):113-117. DOI: 10.13890/j.issn.1000-128x.2020.02.114.
为探究EMS型磁浮列车车体振动响应的敏感波长,采用PID悬浮控制法建立了中低速磁浮试验车动力学模型,并按照相干性原理构建了不平顺与车体振动的相干函数。通过仿真分析发现:相同速度下,磁浮车前后端车体振动加速度的敏感波长存在一定的差异,前端大于后端;随着速度的增加,磁浮车前后车体振动加速度的敏感波长和相干函数的最大值几乎都在增加;随着速度的增加,车体横向加速度的相干函数大于0.8的波长范围增加。同时确定了引起车体振动的主要激励波长,其中车体的横向振动响应主要是由波长在3~9 m范围的轨道方向不平顺引起的,车体的垂向振动响应是由波长在10 m左右以及波长在2.8 m时的高低不平顺引起的。
In order to explore the sensitive wavelength of vibration response of EMS maglev vehicles, the dynamic model of medium-low velocity maglev experimental vehicle was established by using PID levitation control method, and the functional relationship between track irregularity and vehicle vibration response of maglev vehicle based on the principle of coherence was constructed. Through simulation analysis, it was found that there were certain differences in the sensitive wavelengths of vibration acceleration at the front and rear of the maglev vehicle at the same speed, and the front was larger than the rear; with the increase of speed, the maximum value of the sensitive wavelength and coherence function of the vibration acceleration of the front and rear of the maglev vehicle was almost increasing and the lateral acceleration range of wavelength of the car body whose coherence function was greater than 0.8 was increasing; at the same time, the wavelength causing car body vibration was certain, in which the transversal vibration response of the car body was mainly caused by the irregularity of the wavelength in the range of 3~9 m, the vertical vibration response of the car body was caused by the irregularity of the wavelength of about 10 m and the wavelength of 2.8 m.
磁浮列车悬浮控制轨道不平顺相干分析车体振动加速度仿真
maglev vehiclesuspension controltrack irregulatitycoherence calculationsvehicle vibrate accelerationsimulation
LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917-1925.
吴祥明. 磁浮列车[M]. 上海: 上海科学技术出版社, 2003: 1-21.
翟婉明, 赵春发, 夏禾,等. 高速铁路基础结构动态性能演变及服役安全的基础科学问题[J]. 中国科学(技术科学), 2014, 44(7): 645-660.
田国英, 高建敏, 翟婉明. 利用高速铁路轨道不平顺谱估算不平顺限值的方法[J]. 铁道学报, 2015, 37(1): 83-90.
YAZAWA E, TAKESHITA K. Development of measurement device of track irregularity using inertial mid-chord offset method[J]. Quarterly Report of RTRI, 2002, 43(3): 125-130.
TAKAI H. Maintenance of track wtth long-wave track irregularity on Shinkansen[J]. Quarterly Report of RTRI, 1990, 31(3): 128-131.
张格明. 160 km/h线路轨道不平顺管理标准的研究[J]. 中国铁道科学, 1995, 16(4): 31-41.
翟婉明. 车辆—轨道耦合动力学[M]. 5版. 北京: 科学出版社, 2014.
林玉森, 李小珍, 强士中. 轨道不平顺激励下高速铁路桥上列车走行性研究[J]. 铁道学报, 2005, 27(6): 96-100.
陈果, 翟婉明, 左洪福. 250 km/h高速铁路轨道不平顺的安全管理[J]. 西南交通大学学报, 2001, 36(5): 495-499.
练松良, 黄俊飞. 客货共运线路轨道不平顺不利波长的分析研究[J]. 铁道学报, 2004, 26(2): 111-115.
LONG Z, SHI G, WANG L C. Suspension influence analysis of track irregularity of maglev train[C]//IEEE. 2010 Chinese Control and Decision Conference. Xuzhou: IEEE, 2010: 942-947. DOI: 10.1009/CCDC.2010.5498085http://doi.org/10.1009/CCDC.2010.5498085.
XIN L, LUO S H, WU Q, et al. Dynamic response of maglev vehicles excited by irregularities[J]. Internatlonal Journal of Advanced Railway, 2013, 1(3): 69-73.
邓亚士, 魏庆朝, 时瑾. 高速磁浮桥上轨道梁振动特性初步研究[J]. 振动工程学报, 2008, 21(3): 248-254.
时瑾, 魏庆朝, 万传风,等. 随机不平顺激励下磁浮车辆轨道梁动力响应[J]. 力学学报, 2006, 38(6): 850-857.
魏冲锋. 轨道不平顺功率谱时域转换及其应用研究[D]. 成都: 西南交通大学, 2012.
贺光. EMS型中速磁浮列车动力学建模与导向能力研究[D]. 长沙: 国防科学技术大学, 2018.
0
浏览量
2
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构