1.西南交通大学 牵引动力国家重点实验室,四川 成都 610031
王涛(1995—),男,硕士研究生,主要研究方向为旋转件故障诊断和信号分析。
扫 描 看 全 文
王涛, 张兵, 孙琦. 基于EWT-SVD方法的高速列车滚动轴承故障诊断[J]. 机车电传动, 2020,(1):102-107.
Tao WANG, Bing ZHANG, Qi SUN. Fault Diagnosis of High-speed Train Rolling Bearings Based on EWT-SVD Method[J]. Electric Drive for Locomotives, 2020,(1):102-107.
王涛, 张兵, 孙琦. 基于EWT-SVD方法的高速列车滚动轴承故障诊断[J]. 机车电传动, 2020,(1):102-107. DOI: 10.13890/j.issn.1000-128x.2020.01.112.
Tao WANG, Bing ZHANG, Qi SUN. Fault Diagnosis of High-speed Train Rolling Bearings Based on EWT-SVD Method[J]. Electric Drive for Locomotives, 2020,(1):102-107. DOI: 10.13890/j.issn.1000-128x.2020.01.112.
针对高速列车齿轮箱滚动轴承早期故障特征提取困难的情况,提出了基于经验小波变换(Empirical Wavelet Transform,EWT)和奇异值分解(Singular value decomposition, SVD)的轴承故障诊断方法。首先对信号进行EWT变换得到各阶固有模态分量,然后计算各阶固有模态分量的峭度值并选取较大峭度值对应的分量。将选取的分量构造矩阵进行正交化奇异值分解,选择合适的阶数重构信号,最后对重构信号进行Hilbert包络解调分析。分别对仿真信号和滚动轴承发生外环故障进行分析,可以较为清晰地看到滚动轴承故障特征。研究结果表明,结合EWT、峭度系数和SVD的诊断方法可以准确、快速地提取轴承故障信息,从而可以对滚动轴承进行有效诊断。
Aiming at the difficulty in extracting early fault features of high-speed train gearbox rolling bearings, bearings fault diagnosis method based on empirical wavelet transform (EWT) and singular value decomposition (SVD) was proposed. Firstly, EWT was used to decompose the vibration signal into intrinsic modal components. Then the kurtosis of the intrinsic modal components was calculated and some of the intrinsic modal components were selected by the rule of kurtosis. The hankel matrix, which was constructed with the intrinsic modal components, was orthogonally executed through SVD. At last, the Hilbert envelope demodulation was adopted with the new signal to detect the fault information. Through analyzing the simulation signal and the outer vibration signal of fault rolling bearing respectively, the characteristics frequency could be clearly extracted. The results indicated that the diagnosis method of EWT and kurtosis coefficient and SVD could accurately and quickly extract the bearings fault information, so the rolling bearings can be diagnosed effectively.
EWT高速列车滚动轴承故障诊断峭度指标SVD仿真
empirical wavelet transform (EWT)high-speed trainrolling bearingfault diagnosiskurtosis coefficientsingular value decomposition (SVD)simulation
程军圣, 于德介, 杨宇. 基于EMD和SVM的滚动轴承故障诊断方法[J]. 航空动力学报, 2006, 21(3): 575-580.
AMAR M, GONDAL I, WILSON C. Vibration spectrum imaging: a novel bearing fault classification approach[J]. IEEE Transaction on Industrial Electronics, 2015, 62(1): 494-502.
LIN J, ZUO M J. Gearbox fault diagnosis using adaptive wavelet filter[J]. Mechanical Systems and Signal Processing, 2003, 17(6): 1259-1269.
WANG W J, MCFADDEN P D. Application of wavelets to gearbox vibration signals for fault detection[J]. Journal of Sound and Vibration, 1996, 192(5): 927-939.
李志农, 朱明, 褚福磊, 等. 基于经验小波变换的机械故障诊断方法研究[J]. 仪器仪表学报, 2014, 35(11): 2423-2432.
GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signals Processing, 2013, 61(16): 3999-4010.
GILLES J, TRAN G, OSHER S. 2D empirical transform, wavelets, ridgelets and curvelets revesited[J]. SIAM Journal on Imaging Sciences, 2014, 7(1): 157-186.
冯博, 李辉, 郑海起. 基于经验小波变换的轴承故障诊断研究[J]. 轴承, 2015 (12): 53-58.
龙莹, 苏燕辰, 李艳萍, 等. EWT-SVD 在高速列车万向轴动不平衡检测中的应用[J]. 中国测试, 2018, 44(5): 24-30.
何刘, 林建辉, 刘新厂, 等. 万向轴动不平衡检测的改进DTCWT-SVD方法[J]. 振动与冲击, 2016, 35(22): 142-151.
丁建明, 王晗, 林建辉, 等. 基于EMD-Hankel-SVD的高速列车万向轴动不平衡检测[J]. 振动与冲击, 2015, 34(9): 164-170.
刘佳音, 于晓光, 王琦, 等. 基于Hankel矩阵与奇异值分解降噪方法的齿轮故障诊断研究[J]. 机床与液压, 2018, 46(1): 158-162.
张超, 陈建军, 徐亚兰. 基于EMD分解和奇异值差分谱理论的轴承故障诊断方法[J]. 振动工程学报, 2011, 24(5): 539-545.
刘鹏辉, 黄纯, 江亚群, 等. 基于峭度系数的变压器励磁涌流识别方法[J]. 电网技术, 2015, 39(7): 2023-2028.
周浩, 贾民平. 基于 EMD 和峭度的 Hilbert 包络解调在滚动轴承故障诊断中的应用分析[J]. 机电工程, 2014, 31(9): 1136-1139.
0
浏览量
6
下载量
0
CSCD
7
CNKI被引量
关联资源
相关文章
相关作者
相关机构