1.中车株洲电力机车研究所有限公司,湖南 株洲 412001
宋郭蒙(1993—),男,硕士,主要从事轨道交通大功率变流设备的热设计。
扫 描 看 全 文
宋郭蒙, 王雄, 王幸智, 等. 基于高效扰流技术的IGBT双面冷却散热器性能优化研究[J]. 机车电传动, 2020,(1):22-27.
Guomeng SONG, Xiong WANG, Xingzhi WANG, et al. Optimization of the Double-sided Cooling Heatsink of IGBT Based on High Performance Turbulator[J]. Electric Drive for Locomotives, 2020,(1):22-27.
宋郭蒙, 王雄, 王幸智, 等. 基于高效扰流技术的IGBT双面冷却散热器性能优化研究[J]. 机车电传动, 2020,(1):22-27. DOI: 10.13890/j.issn.1000-128x.2020.01.005.
Guomeng SONG, Xiong WANG, Xingzhi WANG, et al. Optimization of the Double-sided Cooling Heatsink of IGBT Based on High Performance Turbulator[J]. Electric Drive for Locomotives, 2020,(1):22-27. DOI: 10.13890/j.issn.1000-128x.2020.01.005.
基于数值仿真和试验研究方法,对用于轨道交通变流器的液冷散热器的性能进行了研究和优化设计,并将结果与HX,D,1C机车、HX,D,2B机车当前使用的散热器对比。结果表明,通过使用高效扰流技术和4组并联的流道结构,提升了散热器换热能力并降低了流阻,使散热器台面温升比HX,D,2B和HX,D,1C机车使用的散热器分别降低37%和14.1%,流阻分别降低36.9%和22.3%;通过使用对称的双面冷却结构,使IGBT安装面的均温性得到提升,并使其占用空间比单面平铺安装减少26%。
Based on the numerical simulation and experimental research methods, the performance of the liquid cooled radiator used in the rail transit converter was studied and optimized, and the results were compared with the current radiator used in HX,D,1C and HX,D,2B locomotives. The results showed that the heat transfer capacity and the flow resistance of the radiator were improved by using the high-efficiency turbulence technology and four parallel channel structures, the temperature rise of the radiator table was 37%and 14.1% lower than that of HX,D,2B and HX,D,1C in use, and the flow resistance was 36.9% and 22.3% lower respectively. By using symmetrical double-sided cooling structure, the temperature homogeneity of IGBT installation surface was improved, and the occupied space was 26% less than that of single-sided tiling installation.
扰流子IGBT双面冷却散热器温升流阻均温性数值仿真
turbulatorIGBTdouble-sided cooling radiatortemperature raisingflow resistancetemperature homogeneitynumerical simulation
SHABANY Y. 传热学:电力电子器件热管理[M]. 余小玲, 吴伟烽, 刘飞龙,译. 北京: 机械工业出版社, 2013.
安德烈亚斯· 福尔克, 麦克尔· 郝康普. IGBT模块:技术、驱动和应用[M]. 韩金刚,译. 北京: 机械工业出版社, 2016: 250-253.
MATSUURA K, TANIMOTO Y, SAITO A. Analysis and compact modeling of temperature-dependent switching in SiC IGBT circuits[J]. Solid-State Electronics, 2019, 153: 59-66.
WU Z H, SU X Z, ZHU Y. IGBT junction and coolant temperature estimation by thermal model[J]. Microelectronics Reliability, 2018, 87: 168-182.
刘杰, 裴念强, 郭开华, 等. 机械泵驱动两相冷却系统特征分析和实验研究[J]. 制冷学报, 2007, 28(2): 27-31.
杨雄鹏, 张磊, 曹伦. IGBT用3D复合热管散热器的数值仿真与实验验证[J]. 电子机械工程, 2015, 31(6): 22-24.
MUDAWAR I. Recent advances in high-flux, two-phase thermal management[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 1-15.
KANDLIKAR S G. History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review[J]. Journal of Heat Transfer, 2012, 134(3): 1-15.
杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 41-57.
周乃君. 工程流体力学[M]. 北京: 机械工业出版社, 2014: 83-85.
任艳, 彭琦, 于迪, 等. 基于加速寿命试验的IGBT可靠性预计模型研究[J]. 电力电子技术, 2017, 51(5): 121-124.
HELD M, JACOB P, NICOLETTI G, et al. Fast power cycling test for IGBT modules in traction application[C]//IEEE. Proceedings of Second International Conference on Power Electronics and Drive System. Singapore: IEEE, 1997: 425-430.
赖伟. 计及低强度热载荷疲劳累积效应的IGBT功率器件寿命模型研究[D]. 重庆: 重庆大学, 2017.
0
浏览量
10
下载量
0
CSCD
8
CNKI被引量
关联资源
相关文章
相关作者
相关机构