1.四川大学 电气工程学院,四川 成都 610065
游志昆(1992—),男,硕士,研究方向为飞轮储能及其应用。
扫 描 看 全 文
游志昆, 周群, 王为. 地铁车辆再生制动飞轮储能回收装置研究[J]. 机车电传动, 2019,(6):106-109,114.
Zhikun YOU, Qun ZHOU, Wei WANG. Research on Flywheel Energy Storage Device of Regenerative Brake for Metro Vehicles[J]. Electric Drive for Locomotives, 2019,(6):106-109,114.
游志昆, 周群, 王为. 地铁车辆再生制动飞轮储能回收装置研究[J]. 机车电传动, 2019,(6):106-109,114. DOI: 10.13890/j.issn.1000-128x.2019.06.121.
Zhikun YOU, Qun ZHOU, Wei WANG. Research on Flywheel Energy Storage Device of Regenerative Brake for Metro Vehicles[J]. Electric Drive for Locomotives, 2019,(6):106-109,114. DOI: 10.13890/j.issn.1000-128x.2019.06.121.
针对地铁运行站间距短、启动加速和制动减速频繁等特点,尤其是再生制动所产生的巨大能量,可通过飞轮储能装置吸收贮存。基于飞轮储能的再生制动能量回收控制策略,通过飞轮储能充电吸收地铁车辆再生制动所产生的巨大能量,在地铁车辆启动时,经飞轮储能装置放电又回送储存的能量;分析了飞轮储能的充放电控制策略,给出了电流、电压以及速度调节器的参数整定公式,并通过仿真验证了飞轮储能装置能够满足运用所需,有效控制了地铁牵引供电系统中的电压波动。
Due to the operation characteristics of short distance between stations, start acceleration and brake deceleration frequently and the huge energy generated by regenerative braking for the metro vehicles can be absorbed and stored by flywheel energy storage device. Based on the control strategy for recycling regenerative braking energy of the flywheel energy storage, the great energy generated by regenerative braking of metro vehicles was absorbed by slywheel charging the flywheel energy storage device could be used to absorbed regenerative braking energy, and sent it back when vehicles start. The charging and discharging control strategy of flywheel energy storage was analyzed, and the parameter setting formula of the current, voltage and speed regulators were provided.The flywheel energy storage device could meet the requirements of operation was verified by simulation, and effectively control the voltage fluctuation in the metro traction power supply system.
再生制动能量回馈飞轮储能逆变器地铁车辆仿真
regenerative brakeenergy feedbackflywheel energy storageinvertermetro vehiclessimulation
北京城建设计研究总院有限责任公司, 中国地铁工程咨询有限责任公司. 地铁设计规范:GB 50157—2013[S]. 北京: 中国建筑工业出版社, 2013.
张秋瑞, 毕大强, 葛宝明. 地铁再生制动能量逆变回馈电网装置的研究[J]. 电力电子技术, 2012, 46(9): 61-63.
毕大强, 张秋瑞, 葛宝明. 储能型再生制动能量并网技术的研究[J]. 城市轨道交通研究, 2014, 17(11): 36-40.
KATO S, CHENG M M, SUMITANI H, et al. Flywheel size design considerations and experimental verification using a 50 kW system for voltage sag compensator with flywheel induction motor[J]. IEEJ Transactions on Industry Applications, 2009, 129(4): 446-452.
BITTERLY J G. Flywheel technology: Past, present, and 21st century projections[J]. IEEE Aerospace and Electronic Systems Magazine, 1998, 13(8): 13-16.
ACHOUR D, KESRAOUI M, CHAIB A. A novel frequency control for a wind turbine generator associated with a flywheel[C]//IEEE. 2017 8th International Renewable Energy Congress (IREC). Amman: IEEE, 2017: 1-6. DOI: 10.1109/IREC.2017.7926037http://doi.org/10.1109/IREC.2017.7926037.
张维煜, 朱熀秋. 飞轮储能关键技术及其发展现状[J]. 电工技术学报, 2011, 26(7): 141-146.
曹玉, 迟颂. 用于永磁同步电机单电流弱磁控制的积分型滑模控制器[J]. 机车电传动, 2018 (1): 39-43.
袁登科, 徐延东, 李秀涛. 永磁同步电动机变频调速系统及其控制[M]. 北京: 机械工业出版社, 2015.
阮毅, 杨影, 陈伯时. 电力拖动自动控制系统运动控制系统[M]. 6版. 北京: 机械工业出版社, 2016.
0
浏览量
2
下载量
0
CSCD
12
CNKI被引量
关联资源
相关文章
相关作者
相关机构