1.同济大学 铁道与城市轨道交通研究院,上海 201804
应之丁(1965—),男,副教授,硕士生导师,主要从事轨道车辆制动的研究。
扫 描 看 全 文
应之丁, 梁晖. 基于试验与仿真相结合的空气制动流体方程解析[J]. 机车电传动, 2019,(6):71-77,82.
Zhiding YING, Hui LIANG. Air Brake Fluid Equation Analysis Based on the Combination of Test and Simulation[J]. Electric Drive for Locomotives, 2019,(6):71-77,82.
应之丁, 梁晖. 基于试验与仿真相结合的空气制动流体方程解析[J]. 机车电传动, 2019,(6):71-77,82. DOI: 10.13890/j.issn.1000-128x.2019.06.017.
Zhiding YING, Hui LIANG. Air Brake Fluid Equation Analysis Based on the Combination of Test and Simulation[J]. Electric Drive for Locomotives, 2019,(6):71-77,82. DOI: 10.13890/j.issn.1000-128x.2019.06.017.
国内重载货运列车技术发展迅速,尤其是新型货车制动机技术,对长大编组的列车而言,进行空气制动性能试验的难度也在增加。每辆货车制动机结构的特性和设计参数相同,并且单车试验性能一致,但在列车管初充气和制动缓解工况下气压传递过程有所不同。通过建立列车制动管路气压数学模型,结合单阀、单车实物试验,建立整列车关于制动工况和缓解工况的半实物仿真试验平台。半实物仿真试验平台要求仿真模型通过硬件接口进行实时控制,并根据试验采集的真实数据,对模型进行修正,确保建立的试验仿真模型合理与科学,并运用制动空气流体力学方程进行解析与求解。文章采用空气动力学偏微分方程组求解,运用特征线法和气容容积充放气模型进行解析仿真计算,结合修正函数进行实时修正,实现半实物仿真试验系统实时控制的功效,为建立智能化试验平台,建立理想的数学模型提供理论基础。
With the rapid development of heavy haul freight train technology in China, especially the new type of freight car brake technology, the difficulty of air brake performance test for long formation trains is also increasing. The structural characteristics and design parameters of each truck brake are the same, and the performance of single vehicle test is the same, but the process of air pressure transmission is different under the condition of initial inflation of train tube and braking relief. By establishing the mathematical model of air pressure in train brake pipeline and combining the single valve and single vehicle physical test, the semi-physical simulation test platform of whole train about brake condition and mitigation condition was established. The hardware-in-the-loop test platform required that the simulation model was controlled in real time through hardware interface, and the model was revised according to the real data collected from the test to ensure the rationality and scientificity of the established test simulation model, and the brake aerodynamics equation was used for analysis and solution. In this paper, the aerodynamic partial differential equations method was used, and the characteristic line method and the gas volumetric charge and discharge model were used for analytical simulation calculation. Combined with the correction function for real-time correction, the real-time control of the semi-physical simulation test system was realized, which provided a theoretical basis for intelligent test platform and an ideal mathematical model.
空气制动试验半实物仿真方程解析重载列车
air brakeexperimenthardware-in-the-loop simulationequation analysisheavy-duty freight train
KAGE K, OKUBAYASHI T, KAWAGOE S. Numerical study of characteristics of pressure reduction of compressed air in a long pipe installing branch pipes[C]//JFPS. Proceedings of the JFPS International Symposium on Fluid Power, 1993(2): 595-600. doi: 10.5739/isfp.1993.595http://doi.org/10.5739/isfp.1993.595.
王新月. 气体动力学基础[M]. 西安: 西北工业大学出版社, 2006.
魏伟, 杜念博. 重载列车制动管路对制动性能的影响[J]. 交通运输工程学报, 2011, 11(5): 49-54.
魏伟, 李文辉. 列车空气制动系统数值仿真[J]. 铁道学报, 2003, 25(1): 38-42.
KUMAGAI N, HASEGAWA I, NAGASE K. Characteristics of pressure reduction of air brake apparatus for rolling stocks: 1st report, characteristic testing equipment and experimental results[J]. Transactions of the Japan Society of Mechanical Engineers Series B, 1990, 56(529): 2672-2677. doi: 10.1299/kikaib.56.2672http://doi.org/10.1299/kikaib.56.2672.
TANAKA H, HASEGAWA I. A study on characteristic of pressure reduction of compressed air in a long pipe: 1st report/An experiment[J]. Transactions of the Japan Society of Machanical Engineers Series B, 1986, 52(474): 772-776. doi: 10.1299/kikaib.52.772http://doi.org/10.1299/kikaib.52.772.
涂勇辉. 基于ARM的较大容积容器压力控制器的设计[D]. 南京: 南京航空航天大学, 2011.
王鹏. 初始释放瓦斯膨胀能测定装置中渐缩形喷口的流量特性研究[D]. 徐州: 中国矿业大学, 2016.
应之丁, 高伟航, 顾灵燕. 基于气动系统流体方程的货车制动性能分析[J]. 铁道学报, 2017, 39(11): 59-65.
林文坡. 气动传动及控制[M]. 西安: 西安交通大学出版社, 1992.
夏寅荪, 吴培元. 120型空气制动机[M]. 北京: 中国铁道出版社, 1995: 73-84.
0
浏览量
2
下载量
0
CSCD
1
CNKI被引量
关联资源
相关文章
相关作者
相关机构