1.西南交通大学 牵引动力国家重点实验室,四川 成都 610031
陈丙炎(1994—),男,硕士研究生,研究方向为机械设备状态监测。
扫 描 看 全 文
陈丙炎, 张卫华, 宋冬利, 等. 最优解调频带识别及其在滚动轴承故障诊断中的应用[J]. 机车电传动, 2019,(5):137-143.
Bingyan CHEN, Weihua ZHANG, Dongli SONG, et al. Identification of Optimal Demodulation Frequency Band and Its Application in Fault Diagnosis of Rolling Element Bearings[J]. Electric Drive for Locomotives, 2019,(5):137-143.
陈丙炎, 张卫华, 宋冬利, 等. 最优解调频带识别及其在滚动轴承故障诊断中的应用[J]. 机车电传动, 2019,(5):137-143. DOI: 10.13890/j.issn.1000-128x.2019.05.120.
Bingyan CHEN, Weihua ZHANG, Dongli SONG, et al. Identification of Optimal Demodulation Frequency Band and Its Application in Fault Diagnosis of Rolling Element Bearings[J]. Electric Drive for Locomotives, 2019,(5):137-143. DOI: 10.13890/j.issn.1000-128x.2019.05.120.
针对在低信噪比和强非高斯噪声存在的情况下滚动轴承故障信号难以有效提取的问题,提出一种新的最优解调频带识别方法并应用于滚动轴承的故障诊断。该方法利用特定频带信号的包络谱幅值的稀疏度来度量故障脉冲,按照稀疏度最大原则自动识别最优解调频带;根据最优解调频带获得带通滤波后的最优解调信号,对最优解调信号的包络谱进行分析来识别滚动轴承故障及其类型。采用振动信号仿真模型和滚动轴承试验台获得的轴承故障信号来测试该方法的有效性,并把测试结果与快速峭度图方法进行对比。结果表明:该方法比快速峭度图方法能够更加准确地识别共振频带,并且在低信噪比和强非高斯噪声存在的情况下也能准确提取轴承故障特征。
In order to effectively extract fault impulses of rolling element bearings in the presence of low signal to noise ratio and intense non-Gaussian noise, a new method for identifying optimal demodulation frequency band was presented and applied to fault diagnosis of rolling element bearings. The proposed method adopted the sparsity of frequency band signal to quantify fault impulses,and decomposed frequency band signal with maximal sparsity was selected as the optimal demodulation signal. Eventually, the bearing fault types can be identified from envelope spectrum of the optimal demodulation signal. To validate the effectiveness of the proposed method in bearing fault diagnosis, simulated signals and experimental signals of bearing localized faults were tested respectively and the performance of fast kurtogram was compared. The results indicated that the proposed method could more accurately recognize resonant frequency band than fast kurtogram and effectively extract bearing fault characteristics with the interference of low signal to noise ratio and intense non-Gaussian noise.
最优解调频带稀疏图滚动轴承故障诊断快速峭度图
optimal demodulation frequency bandsparsegramrolling element bearingsfault diagnosisfast kurtogram
刘建强, 赵治博, 章国平, 等. 地铁车辆转向架轴承故障诊断方法研究[J]. 铁道学报, 2015, 37(1): 30-36.
DWYER R. Detection of non-Gaussian signals by frequency domain Kurtosis estimation[C]//IEEE. IEEE international conference on acoustics, speech, and signal processing. Boston: IEEE, 1983: 607-610.
ANTONI J. The spectral kurtosis: a useful tool for characterising non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
ANTONI J, RANDALL R B. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 308-331.
ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2616-2633.
苏文胜, 王奉涛, 张志新, 等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击, 2010, 29(3): 18-21.
李宏坤, 杨蕊, 任远杰, 等. 利用粒子滤波与谱峭度的滚动轴承故障诊断[J]. 机械工程学报, 2017, 53(3): 63-72.
LEI Y G, LIN J, HE Z G, et al. Application of an improved kurtogram method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2011, 25(5): 1738-1749.
WAND D, TSE P W, TSUI K L. An enhanced Kurtogram method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2013, 35(1/2): 176-199.
ZHANG X H, KANG J S, XIAO L, et al. A new improved Kurtogram and its application to bearing fault diagnosis[J]. Shock and Vibration, 2015 (3): 1-22.
MIAO Y H, ZHAO M, LIN J, et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017 (92): 173-195.
MOSHREFZADEH A, FASANA A. The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis[J]. Mechanical Systems and Signal Processing, 2018 (105): 294-318.
JIA X D, ZHAO M, DI Y, et al. Sparse filtering with the generalized lp/lq norm and its applications to the condition monitoring of rotating machinery[J]. Mechanical Systems and Signal Processing, 2018 (102): 198-213.
JIA X D, ZHAO M, DI Y, et al. Investigation on the kurtosis filter and the derivation of convolutional sparse filter for impulsive signature enhancement[J]. Journal of Sound and Vibration, 2017 (386): 433-448.
KRISHNAN D, TAY T, FERGUS R. Blind deconvolution using a normalized sparsity measure[C]//IEEE. CVPR2011. Colorado Springs: IEEE, 2011: 233-240.
LI H, TANG X D, WANG R, et al. Comparative study on theoretical and machine learning methods for acquiring compressed liquid densities of 1,1,1,2,3,3,3-heptafluoropropane (R227ea) via song and mason equation, support vector machine, and artificial neural networks[J]. Applied Sciences, 2016, 6(1): 25. doi: 10.3390/app6010025http://doi.org/10.3390/app6010025.
BROWN A. Universal development and L1–L2 convergence in bilingual construal of manner in speech and gesture in Mandarin, Japanese, and English[J]. Modern Language Journal, 2015, 99(Suppl 1): 66-82.
ZHAO M, LIN J, MIAO Y H, et al. Detection and recovery of fault impulses via improved harmonic product spectrum and its application in defect size estimation of train bearings[J]. Measurement, 2016 (91): 421-439.
MIAO Y H, ZHAO M, LIN J, et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2017 (92): 173-195.
CHENG Y, ZHOU N, ZHANG W H, et al. Application of an improved minimum entropy deconvolution method for railway rolling element bearing fault diagnosis[J]. Journal of Sound and Vibration, 2018 (425): 53-69.
0
浏览量
3
下载量
0
CSCD
4
CNKI被引量
关联资源
相关文章
相关作者
相关机构