浏览全部资源
扫码关注微信
1.中车青岛四方机车车辆股份有限公司,山东 青岛 266111
2.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
高乾宸,助理研究员,从事轨道车辆被动安全性研究;E-mail: qianchengao@my.swjtu.edu.cn
纸质出版日期:2024-07-10,
收稿日期:2024-01-02,
修回日期:2024-05-08,
移动端阅览
姜焙晨, 王晖, 高乾宸, 等. 切削吸能结构垂向偏置冲击试验与数值模拟研究[J]. 机车电传动. 2024(4): 125-131.
JIANG Beichen, WANG Hui, GAO Qianchen, et al. Vertical offset impact experiment and numerical simulation study on cutting-type energy absorbing structure[J]. Electric drive for locomotives. Electric drive for locomotives, 2024(4): 125-131.
姜焙晨, 王晖, 高乾宸, 等. 切削吸能结构垂向偏置冲击试验与数值模拟研究[J]. 机车电传动. 2024(4): 125-131. DOI:10.13890/j.issn.1000-128X.2024.04.106..
JIANG Beichen, WANG Hui, GAO Qianchen, et al. Vertical offset impact experiment and numerical simulation study on cutting-type energy absorbing structure[J]. Electric drive for locomotives. Electric drive for locomotives, 2024(4): 125-131. DOI:10.13890/j.issn.1000-128X. 2024. 04.106.
为了充分研究切削式吸能装置在垂向偏置载荷下的吸能性能,文章设计了全尺寸垂向偏置冲击试验,并利用有限元软件LS-DYNA对碰撞过程进行了数值模拟,基于验证后的有限元模型,进一步研究垂向偏置冲击对吸能过程的影响。结果表明,文章建立的有限元模型可以准确捕捉切削变形过程,预测的碰撞响应与试验结果吻合较好。轴向冲击工况下切削式吸能装置的总吸能量为230.74 kJ,平均力为590.20 kN,总压缩量为387.02 mm,相比于轴向冲击工况,垂向偏置冲击工况下结构的平均力、总压缩位移和总吸收能量分别减少了2.6%、1.8%和4.3%。研究发现垂直偏置冲击迫使吸能管产生了约3°的偏转,减少了吸能过程中刀具的切削深度和压缩量,这一变化解释了垂向偏置冲击工况对吸能性能的影响。
To comprehensively study the energy-absorbing performance of cutting-type energy-absorbing devices under vertical offset loads
this study conducted full-scale vertical offset impact experiments and numerically simulated the collision process using LS-DYNA. Based on the verified finite element model
further exploration was performed to investigate the influence of vertical offset impact on the energy absorption process. The results indicated that the established finite element model accurately captured the cutting deformation process
showcasing close agreement between the projected collision responses and the experimental results. Under axial impact conditions
the cutting-type energy absorbing device exhibited a total energy absorption of 230.74 kJ
with an average force of 590.20 kN and a total compression of 387.02 mm. In contrast
under vertical offset impact conditions
the average force
total compression
and total energy absorption of the structure decreased by 2.6%
1.8%
and 4.3%
respectively
when compared to axial impact conditions. The study reveals a deflection of the energy-absorbing tube by about 3° under the action of vertical offset impact
leading to a reduction in both the cutting depth and compression of the tool during the energy-absorption process. This adaption sheds light on the effect of vertical offset impact conditions on energy absorption performance.
切削吸能结构结构设计垂向偏置冲击试验数值模拟
cutting-type energy-absorbing structurestructural designvertical offset impact testnumerical simulation
王晋乐, 田洪雷, 赵士忠, 等. 蜂窝填充梯度吸能结构力学特性试验研究[J]. 中南大学学报(自然科学版), 2022, 53(5): 1904-1917.
WANG Jinle, TIAN Honglei, ZHAO Shizhong, et al. Experimental study on mechanical properties of honeycomb-filled gradient energy absorption structure[J]. Journal of central south university (science and technology), 2022, 53(5): 1904-1917.
陈佳明, 朱涛, 肖守讷, 等. 结构参数对铝蜂窝防爬器吸能特性影响[J]. 机车电传动, 2022(2): 155-162.
CHEN Jiaming, ZHU Tao, XIAO Shoune, et al. Influence of structural parameters on energy absorption characteristics of aluminum honeycomb anti-crawling device[J]. Electric drive for locomotives, 2022(2): 155-162.
GAO Qiang, WANG Liangmo, WANG Yuanlong, et al. Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading[J]. Thin-walled structures, 2016, 100: 105-112.
常宁, 刘国伟. 轨道车辆切削式吸能过程仿真[J]. 中南大学学报(自然科学版), 2010, 41(6): 2444-2450.
CHANG Ning, LIU Guowei. Simulation for energy-absorbing process of railway vehicle in metal-cutting way[J]. Journal of central south university(science and technology), 2010, 41(6): 2444-2450.
程玲. 轨道车辆被动安全系统及其模块化研究[D]. 上海: 同济大学, 2006.
CHENG Ling. The study of passive-safety system and modular design for railway vehicle[D]. Shanghai: Tongji University, 2006.
王贵久. 刨削式防爬器仿真分析及实验验证[J]. 机械设计与研究, 2017, 33(2): 163-166.
WANG Guijiu. The simulation analysis and experimental verification of broaching anti-climber[J]. Machine design & research, 2017, 33(2): 163-166.
夏茜. 切削吸能过程热固耦合分析及参数优化研究[D]. 长沙: 中南大学, 2012.
XIA Xi. Thermal-structure coupled analysis and parameter optimization of cutting energy-absorbing process[D]. Changsha: Central South University, 2012.
刘艳文, 修瑞仙, 李本怀, 等. 基于动态J-C本构的轨道交通车辆新型切削式吸能装置耐撞性研究[J]. 城市轨道交通研究, 2016, 19(6): 28-33.
LIU Yanwen, XIU Ruixian, LI Benhuai, et al. On crashworthiness of the new cutting energy-absorbing device installed on railway vehicles based on dynamic Johnson Cook constitutive[J]. Urban mass transit, 2016, 19(6): 28-33.
汤礼鹏. 城轨车辆切削式专用吸能装置研究[D]. 长沙: 中南大学, 2010.
TANG Lipeng. Research on the special energy-absorbing structure of mass transit vehicles[D]. Changsha: Central South University, 2010.
GAO Guangjun, GUAN Weiyuan, LI Jian, et al. Experimental investigation of an active-passive integration energy absorber for railway vehicles[J]. Thin-walled structures, 2017, 117: 89-97.
郭立明. 城轨列车前端吸能器储能结构设计与数值模拟研究[D]. 长春: 吉林大学, 2021.
GUO Liming. Study on the design and numerical simulation of the energy storage structure of the front-end energy absorber of urban rail train[D]. Changchun: Jilin University, 2021.
PENG Yong, WANG Shiming, YAO Song, et al. Crashworthiness analysis and optimization of a cutting-style energy absorbing structure for subway vehicles[J]. Thin-walled structures, 2017, 120: 225-235.
DING Jiangfeng, WANG Xiaorui. Collision response of a cutting energy absorber and its application to crashworthiness of metro trains[C]//IEEE. 2019 4th International Conference on System Reliability and Safety (ICSRS). Rome: IEEE, 2019: 479-483.
雷成, 肖守讷, 罗世辉. 轨道车辆新型车端专用吸能装置[J]. 西南交通大学学报, 2013, 48(4): 738-744.
LEI Cheng, XIAO Shoune, LUO Shihui. New special energy-absorbing component at vehicle end of rail vehicle[J]. Journal of southwest jiaotong university, 2013, 48(4): 738-744.
雷成, 肖守讷, 罗世辉. 轨道车辆切削式吸能装置吸能特性研究[J]. 中国机械工程, 2013, 24(2): 263-267.
LEI Cheng, XIAO Shoune, LUO Shihui. Research on energy absorption characteristics of rail vehicle energy-absorbing component in cutting way[J]. China mechanical engineering, 2013, 24(2): 263-267.
GAO Qianchen, XIAO Shoune, WANG Xiaorui, et al. Tool failure analysis and multi-objective optimization of a cutting-type energy-absorbing structure for subway vehicles[J]. Applied sciences, 2023, 13(3): 1619.
PENG Yong, ZHOU Jiahao, HOU Lin, et al. A hybrid MCDM-based optimization method for cutting-type energy-absorbing structures of subway vehicles[J]. Structural and multidisciplinary optimization, 2022, 65(8): 228.
刘国伟, 夏茜, 王千叶, 等. 切削式吸能热力耦合研究[J]. 振动与冲击, 2015, 34(14): 93-99.
LIU Guowei, XIA Xi, WANG Qianye, et al. Coupled thermo-structure analysis of cutting energy-absorbing process[J]. Journal of vibration and shock, 2015, 34(14): 93-99.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构