图1 切削式吸能装置和安装位置
纸质出版日期:2024-07-10,
收稿日期:2024-01-02,
修回日期:2024-05-08
移动端阅览
引用本文
阅读全文PDF
为了充分研究切削式吸能装置在垂向偏置载荷下的吸能性能,文章设计了全尺寸垂向偏置冲击试验,并利用有限元软件LS-DYNA对碰撞过程进行了数值模拟,基于验证后的有限元模型,进一步研究垂向偏置冲击对吸能过程的影响。结果表明,文章建立的有限元模型可以准确捕捉切削变形过程,预测的碰撞响应与试验结果吻合较好。轴向冲击工况下切削式吸能装置的总吸能量为230.74 kJ,平均力为590.20 kN,总压缩量为387.02 mm,相比于轴向冲击工况,垂向偏置冲击工况下结构的平均力、总压缩位移和总吸收能量分别减少了2.6%、1.8%和4.3%。研究发现垂直偏置冲击迫使吸能管产生了约3°的偏转,减少了吸能过程中刀具的切削深度和压缩量,这一变化解释了垂向偏置冲击工况对吸能性能的影响。
To comprehensively study the energy-absorbing performance of cutting-type energy-absorbing devices under vertical offset loads, this study conducted full-scale vertical offset impact experiments and numerically simulated the collision process using LS-DYNA. Based on the verified finite element model, further exploration was performed to investigate the influence of vertical offset impact on the energy absorption process. The results indicated that the established finite element model accurately captured the cutting deformation process, showcasing close agreement between the projected collision responses and the experimental results. Under axial impact conditions, the cutting-type energy absorbing device exhibited a total energy absorption of 230.74 kJ, with an average force of 590.20 kN and a total compression of 387.02 mm. In contrast, under vertical offset impact conditions, the average force, total compression, and total energy absorption of the structure decreased by 2.6%, 1.8%, and 4.3%, respectively, when compared to axial impact conditions. The study reveals a deflection of the energy-absorbing tube by about 3° under the action of vertical offset impact, leading to a reduction in both the cutting depth and compression of the tool during the energy-absorption process. This adaption sheds light on the effect of vertical offset impact conditions on energy absorption performance.
在实际列车运行中,碰撞事故导致的人员伤亡和财产损失难以承受,因此如何提高轨道车辆的被动安全性能已成为一个十分重要的问题。一种常见的防护措施是在车辆端部安装吸能装置,这种装置可以有效减少列车碰撞事故造成的损失,从而最大程度地保证司乘人员的安全。随着地铁车辆运营速度的不断提高,新型吸能结构如功能梯度结构[
长期以来,相关领域学者通过试验[
虽然目前已经有大量关于切削式吸能装置的设计和研究,但多数以仿真研究为主,并未考虑偏置冲击对装置吸能性能的影响。为了更好地指导切削式吸能装置结构设计,非轴向冲击影响机理和切削吸能机理都需要进一步揭示。本研究首先介绍切削式吸能装置的结构特点,并基于有限元方法对装置的耐撞性进行分析研究,通过切削式吸能装置的全尺寸垂向偏置冲击试验对模型进行验证,研究轴向冲击和垂向偏置冲击工况下切削式吸能装置的碰撞响应,并进一步分析垂向偏置载荷对结构耐撞性的影响。
图1 切削式吸能装置和安装位置
Fig. 1 Cutting-type energy-absorbing device and installation position
切削式吸能装置的材料参数如
(a) 切削式吸能装置
(b) 刀具安装位置
(c) 切屑层设计
(d) 切槽设计
图2 结构和切削参数设计
Fig. 2 Structural and cutting parameter design
中车青岛四方机车车辆股份有限公司进行了相关的垂直偏置冲击试验,
图3 垂向偏置冲击试验
Fig. 3 Vertical offset impact experiment
本文选择总吸能量
总吸能量
(1) |
式中:d为切削行程;
平均力
(2) |
本研究利用有限元软件LS-DYNA模拟轴向冲击工况和垂向偏置冲击工况下切削吸能装置的碰撞响应。
图4 有限元模型
Fig. 4 Finite element model
A—轴向冲击工况;X—垂向偏置冲击工况;a—主动端吸能装置;b—被动端吸能装置。
吸能管选择Johnson-Cook材料模型,该模型考虑了金属材料的应变硬化、应变速率强化和温度软化3种效应,在切削吸能研究中已得到了广泛的应用[
(4) |
(5) |
式中:
Johnson-Cook模型中包含了失效模型,其断裂应变表达式为:
(6) |
(7) |
式中:
单元损伤定义为
(8) |
式中:
Johnson-Cook材料模型还需要用状态方程来描述固体材料在LS-DYNA中的力学行为,线性多项式状态方程为
(9) |
式中:
图5 切削式吸能装置结构变形
Fig. 5 Structural deformation of cutting-type energy-absorbing device
(a) 界面力‒位移曲线
(b) 吸能量‒位移曲线
图6 切削式吸能装置的吸能性能
Fig. 6 Energy absorption performance of cutting-type energy-absorbing device
为了研究垂向偏置冲击对结构吸能性能的影响,使得当碰撞结束时切削式吸能装置达到最大压缩量,将增加碰撞质量至25 t。
图7 不同工况装置的吸能性能
Fig. 7 Energy absorption performance of devices under different operating conditions
刀具负载过程可以定义为初始切削阶段(0~40 mm)、稳定切削阶段(40~360 mm)和挤压阶段(360~400 mm),
仿真工况 | 初始峰值力 | 总吸能量 | 平均力 | 总压缩位移d/mm |
---|---|---|---|---|
A-1 | 141.98 | 64.51 | 166.62 | 387.16 |
A-2 | 140.42 | 64.04 | 165.49 | 386.96 |
X-1-a | 121.43 | 61.08 | 160.80 | 379.84 |
X-2-a | 120.43 | 62.69 | 164.23 | 381.71 |
X-1-b | 122.88 | 62.61 | 163.67 | 382.54 |
X-2-b | 124.76 | 59.66 | 158.86 | 375.56 |
(a) 刀具负载曲线
(b) 吸能管偏转角
图8 刀具和吸能管吸能性能
Fig. 8 Energy absorption performance of tool and tube
图9 吸能管受垂向载荷和附加弯矩的耦合作用
Fig. 9 Coupling effect of vertical load and additional bending moment on energy absorbing tube
本文首先进行了切削式吸能装置结构设计,并基于有限元方法对装置的耐撞性进行研究,通过全尺寸垂向偏置冲击试验验证了数值模型的有效性。在此基础上,进一步研究了垂向偏置载荷对吸能装置耐撞性的影响,得出以下主要结论:
①全尺寸冲击试验结果表明,在偏置冲击下切削式吸能装置切削力级平稳,结构变形模式稳定,有效吸能行程比为91.8%。
②数值模拟结果表明,模型可以准确捕捉切削变形过程,预测的碰撞响应与试验结果吻合较好,总吸能量、平均力和总压缩位移的最大误差为5.78%。
③轴向冲击工况下切削式吸能装置的总吸能量为230.74 kJ,平均力为590.20 kN,总压缩量为387.02 mm,相比于轴向冲击工况,垂向偏置冲击工况下结构的平均力、总压缩位移和总吸能量分别减少了2.6%、1.8%和4.3%。在垂向载荷和附加弯矩的耦合作用下,吸能管发生了约3°的偏转,减少了刀具的切削深度和压缩量,这一变化解释了垂向偏置冲击工况对吸能性能的影响。
王晋乐, 田洪雷, 赵士忠, 等. 蜂窝填充梯度吸能结构力学特性试验研究[J]. 中南大学学报(自然科学版), 2022, 53(5): 1904-1917. [百度学术]
WANG Jinle, TIAN Honglei, ZHAO Shizhong, et al. Experimental study on mechanical properties of honeycomb-filled gradient energy absorption structure[J]. Journal of central south university (science and technology), 2022, 53(5): 1904-1917. [百度学术]
陈佳明, 朱涛, 肖守讷, 等. 结构参数对铝蜂窝防爬器吸能特性影响[J]. 机车电传动, 2022(2): 155-162. [百度学术]
CHEN Jiaming, ZHU Tao, XIAO Shoune, et al. Influence of structural parameters on energy absorption characteristics of aluminum honeycomb anti-crawling device[J]. Electric drive for locomotives, 2022(2): 155-162. [百度学术]
GAO Qiang, WANG Liangmo, WANG Yuanlong, et al. Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading[J]. Thin-walled structures, 2016, 100: 105-112. [百度学术]
常宁, 刘国伟. 轨道车辆切削式吸能过程仿真[J]. 中南大学学报(自然科学版), 2010, 41(6): 2444-2450. [百度学术]
CHANG Ning, LIU Guowei. Simulation for energy-absorbing process of railway vehicle in metal-cutting way[J]. Journal of central south university(science and technology), 2010, 41(6): 2444-2450. [百度学术]
程玲. 轨道车辆被动安全系统及其模块化研究[D]. 上海: 同济大学, 2006. [百度学术]
CHENG Ling. The study of passive-safety system and modular design for railway vehicle[D]. Shanghai: Tongji University, 2006. [百度学术]
王贵久. 刨削式防爬器仿真分析及实验验证[J]. 机械设计与研究, 2017, 33(2): 163-166. [百度学术]
WANG Guijiu. The simulation analysis and experimental verification of broaching anti-climber[J]. Machine design & research, 2017, 33(2): 163-166. [百度学术]
夏茜. 切削吸能过程热固耦合分析及参数优化研究[D]. 长沙: 中南大学, 2012. [百度学术]
XIA Xi. Thermal-structure coupled analysis and parameter optimization of cutting energy-absorbing process[D]. Changsha: Central South University, 2012. [百度学术]
刘艳文, 修瑞仙, 李本怀, 等. 基于动态J-C本构的轨道交通车辆新型切削式吸能装置耐撞性研究[J]. 城市轨道交通研究, 2016, 19(6): 28-33. [百度学术]
LIU Yanwen, XIU Ruixian, LI Benhuai, et al. On crashworthiness of the new cutting energy-absorbing device installed on railway vehicles based on dynamic Johnson Cook constitutive[J]. Urban mass transit, 2016, 19(6): 28-33. [百度学术]
汤礼鹏. 城轨车辆切削式专用吸能装置研究[D]. 长沙: 中南大学, 2010. [百度学术]
TANG Lipeng. Research on the special energy-absorbing structure of mass transit vehicles[D]. Changsha: Central South University, 2010. [百度学术]
GAO Guangjun, GUAN Weiyuan, LI Jian, et al. Experimental investigation of an active-passive integration energy absorber for railway vehicles[J]. Thin-walled structures, 2017, 117: 89-97. [百度学术]
郭立明. 城轨列车前端吸能器储能结构设计与数值模拟研究[D]. 长春: 吉林大学, 2021. [百度学术]
GUO Liming. Study on the design and numerical simulation of the energy storage structure of the front-end energy absorber of urban rail train[D]. Changchun: Jilin University, 2021. [百度学术]
PENG Yong, WANG Shiming, YAO Song, et al. Crashworthiness analysis and optimization of a cutting-style energy absorbing structure for subway vehicles[J]. Thin-walled structures, 2017, 120: 225-235. [百度学术]
DING Jiangfeng, WANG Xiaorui. Collision response of a cutting energy absorber and its application to crashworthiness of metro trains[C]//IEEE. 2019 4th International Conference on System Reliability and Safety (ICSRS). Rome: IEEE, 2019: 479-483. [百度学术]
雷成, 肖守讷, 罗世辉. 轨道车辆新型车端专用吸能装置[J]. 西南交通大学学报, 2013, 48(4): 738-744. [百度学术]
LEI Cheng, XIAO Shoune, LUO Shihui. New special energy-absorbing component at vehicle end of rail vehicle[J]. Journal of southwest jiaotong university, 2013, 48(4): 738-744. [百度学术]
雷成, 肖守讷, 罗世辉. 轨道车辆切削式吸能装置吸能特性研究[J]. 中国机械工程, 2013, 24(2): 263-267. [百度学术]
LEI Cheng, XIAO Shoune, LUO Shihui. Research on energy absorption characteristics of rail vehicle energy-absorbing component in cutting way[J]. China mechanical engineering, 2013, 24(2): 263-267. [百度学术]
GAO Qianchen, XIAO Shoune, WANG Xiaorui, et al. Tool failure analysis and multi-objective optimization of a cutting-type energy-absorbing structure for subway vehicles[J]. Applied sciences, 2023, 13(3): 1619. [百度学术]
PENG Yong, ZHOU Jiahao, HOU Lin, et al. A hybrid MCDM-based optimization method for cutting-type energy-absorbing structures of subway vehicles[J]. Structural and multidisciplinary optimization, 2022, 65(8): 228. [百度学术]
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
相关文章
相关作者
相关机构