浏览全部资源
扫码关注微信
1.国家能源集团陕西神延煤炭有限责任公司,陕西 榆林 719000
2.湖南大学 机械与运载工程学院,湖南 长沙 410082
高 铭,男,博士,副研究员,主要从事智能网联汽车环境感知、轨迹预测研究;E-mail: gaoming@hnu.edu.cn
纸质出版日期:2024-07-10,
收稿日期:2024-04-24,
修回日期:2024-07-01,
移动端阅览
马小龙, 高铭, 熊国东. 考虑延时的自动驾驶横向控制综述与分析[J]. 机车电传动, 2024(4): 139-147.
MA Xiaolong, GAO Ming, XIONG Guodong. Review and analysis of lateral control in autonomous driving with consideration of delay[J]. Electric drive for locomotives,2024(4): 139-147.
马小龙, 高铭, 熊国东. 考虑延时的自动驾驶横向控制综述与分析[J]. 机车电传动, 2024(4): 139-147. DOI:10.13890/j.issn.1000-128X.2024.04.017.
MA Xiaolong, GAO Ming, XIONG Guodong. Review and analysis of lateral control in autonomous driving with consideration of delay[J]. Electric drive for locomotives,2024(4): 139-147. DOI:10.13890/j.issn.1000-128X.2024.04.017.
随着科技的进步和创新,自动驾驶技术取得了显著的发展。在自动驾驶系统中,车辆的横向控制在实现精确路径跟踪和稳定行驶中起着关键作用,由于传感器数据传输、控制器数据处理和执行器转向响应等因素的存在,延时问题在车辆自动驾驶控制系统中不可避免,然而延时会恶化横向控制的性能和稳定性,因此考虑延时的横向控制方法备受关注。文章旨在对考虑延时的横向控制方法进行总结和分类,简要介绍了车辆模型和横向控制方法,分析了延时产生的原因和延时模型,并从基于延时预测补偿、延时状态空间增广和延时扰动鲁棒控制等3个方面对考虑延时的横向控制方法进行介绍。
With the progress and innovation in science and technology
automatic driving technology has made remarkable advancements. In automatic driving systems
the lateral control of vehicles plays a key role in realizing precise path tracking and ensuring stable driving. However
due to various issues including the transmission of sensor data
processing of controller data
and steering response from actuators
delays in control systems for automatic driving are unavoidable. These delays can deteriorate the lateral control performance and stability. Consequently
lateral control methods that take these delays into account have attracted a lot of attention. This paper summarizes and classifies these methods
and briefly introduces vehicle models and the lateral control techniques. Additionally
it analyzes the causes of delays and presents a delay model. The discussion focuses on three aspects of lateral control methods that address delays: delay-based predictive compensation
delay state-space augmentation
and robust control of delay disturbances.
自动驾驶横向控制预测补偿状态增广鲁棒控制延时
autonomous drivinglateral controlpredictive compensationstate-space augmentationrobust controldelay
CHEN Long, LI Yuchen, HUANG Chao, et al. Milestones in autonomous driving and intelligent vehicles: survey of surveys[J]. IEEE transactions on intelligent vehicles, 2023, 8(2): 1046-1056.
QIN Zhaobo, CHEN Liang, HU Manjiang, et al. A lateral and longitudinal dynamics control framework of autonomous vehicles based on multi-parameter joint estimation[J]. IEEE transactions on vehicular technology, 2022, 71(6): 5837-5852.
KIRAN B R, SOBH I, TALPAERT V, et al. Deep reinforcement learning for autonomous driving: a survey[J]. IEEE transactions on intelligent transportation systems, 2022, 23(6): 4909-4926.
LI Xiaodi, YANG Xueyan, SONG Shiji. Lyapunov conditions for finite-time stability of time-varying time-delay systems[J]. Automatica, 2019, 103: 135-140.
VINTER R B. State constrained optimal control problems with time delays[J]. Journal of mathematical analysis and applications, 2018, 457(2): 1696-1712.
YANG Renming, ZANG Faye, SUN Liying, et al. Finite‐time adaptive robust control of nonlinear time‐delay uncertain systems with disturbance[J]. International journal of robust and nonlinear control, 2019, 29(4): 919-934.
崔俊锋, 王长远, 王琦, 等. 中低速磁浮列车制动过程的时滞补偿预测控制[J]. 铁道科学与工程学报, 2024, 21(2): 735-747.
CUI Junfeng, WANG Changyuan, WANG Qi, et al. Time-delay compensation predictive control for braking process of medium-low speed maglev train[J]. Journal of railway science and engineering, 2024, 21(2): 735-747.
谭畅, 李毅清, 杨辉. 存在扰动和时滞的高速列车自适应制动控制[J]. 华东交通大学学报, 2021, 38(4): 64-71.
TAN Chang, LI Yiqing, YANG Hui. Adaptive braking control for high-speed trains with disturbances and time delays[J]. Journal of east China jiaotong university, 2021, 38(4): 64-71.
RAJAMANI R. Vehicle dynamics and control[M]. 2nd ed. New York: Springer, 2012.
GILLESPIE T D, TAHERI S, SANDU C, et al. Fundamentals of vehicle dynamics[M]. Warrendale: SAE International, 2021.
COULTER R C. Implementation of the pure pursuit path tracking algorithm[Z]. Pittsburgh: The robotics institute of carnegie mellon university, 1992.
THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of field robotics, 2006, 23(9): 661-692.
HAN Gaining, FU Weiping, WANG Wen, et al. The lateral tracking control for the intelligent vehicle based on adaptive PID neural network[J]. Sensors, 2017, 17(6): 1244.
DONG Xueping, PEI Haiyang, GAN Min. Autonomous vehicle lateral control based on fractional-order PID[C]//IEEE. 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference. Xi'an: IEEE, 2021: 830-835.
ZHANG Jiaqi, ZHANG Tao, LI Gang, et al. Path following control based on fuzzy adaptive PID for unmanned vehicle[C]//IEEE. 2020 4th CAA International Conference on Vehicular Control and Intelligence. Hangzhou: IEEE, 2020: 502-507.
XU Shaobing, PENG H. Design, analysis, and experiments of preview path tracking control for autonomous vehicles[J]. IEEE transactions on intelligent transportation systems, 2020, 21(1): 48-58.
胡杰, 钟鑫凯, 陈瑞楠, 等. 基于模糊LQR的智能汽车路径跟踪控制[J]. 汽车工程, 2022, 44(1): 17-25.
HU Jie, ZHONG Xinkai, CHEN Ruinan, et al. Path tracking control of intelligent vehicles based on fuzzy LQR[J]. Automotive engineering, 2022, 44(1): 17-25.
高琳琳, 唐风敏, 郭蓬, 等. 自动驾驶横向运动控制的改进LQR方法研究[J]. 机械科学与技术, 2021, 40(3): 435-441.
GAO Linlin, TANG Fengmin, GUO Peng, et al. Research on improved LQR control for self-driving vehicle lateral motion[J]. Mechanical science and technology for aerospace engineering, 2021, 40(3): 435-441.
龚建伟, 刘凯, 齐建永. 无人驾驶车辆模型预测控制[M]. 2版. 北京: 北京理工大学出版社, 2020.
GONG Jianwei, LIU Kai, QI Jianyong. Model predictive control for self-driving vehicles[M]. 2nd ed. Beijing: Beijing Institute of Technology Press, 2020.
RAFAILA R C, LIVINT G. Nonlinear model predictive control of autonomous vehicle steering[C]//IEEE. 2015 19th International Conference on System Theory, Control and Computing. Cheile Gradistei: IEEE, 2015: 466-471.
WANG Hengyang, LIU Biao, PING Xianyao, et al. Path tracking control for autonomous vehicles based on an improved MPC[J]. IEEE access, 2019, 7: 161064-161073.
DU Haiping, ZHANG Nong, NAGHDY F. Velocity-dependent robust control for improving vehicle lateral dynamics[J]. Transportation research part C: emerging technologies, 2011, 19(3): 454-468.
CORNO M, PANZANI G, ROSELLI F, et al. An LPV approach to autonomous vehicle path tracking in the presence of steering actuation nonlinearities[J]. IEEE transactions on control systems technology, 2021, 29(4): 1766-1774.
YANG Kai, TANG Xiaolin, QIN Yechen, et al. Comparative study of trajectory tracking control for automated vehicles via model predictive control and robust h-infinity state feedback control[J]. Chinese journal of mechanical engineering, 2021, 34(1): 74.
WU Yan, WANG Lifang, ZHANG Junzhi, et al. Path following control of autonomous ground vehicle based on nonsingular terminal sliding mode and active disturbance rejection control[J]. IEEE transactions on vehicular technology, 2019, 68(7): 6379-6390.
OUSSAMA A, MOHAMED T. End-to-end deep learning for autonomous vehicles lateral control using CNN[M]//KACPRZYK J, BALAS V E, EZZIYYANI M. Advanced Intelligent Systems for Sustainable Development(AI2SD’2020). Berne: Springer Cham, 2022: 705-712.
PÉREZ-GIL Ó, BAREA R, LÓPEZ-GUILLÉN E, et al. Deep reinforcement learning based control for autonomous vehicles in CARLA[J]. Multimedia tools and applications, 2022, 81(3): 3553-3576.
赵建辉, 高洪波, 张新钰, 等. 基于时间延迟动态预测的自动驾驶控制[J]. 清华大学学报(自然科学版), 2018, 58(4): 432-437.
ZHAO Jianhui, GAO Hongbo, ZHANG Xinyu, et al. Automatic driving control based on time delay dynamic predictions[J]. Journal of Tsinghua university(science and technology), 2018, 58(4): 432-437.
汤新华, 成宇庆, 潘树国, 等. 基于时滞补偿的纯追踪控制预瞄距离优化方法[J]. 中国惯性技术学报, 2023, 31(9): 876-882.
TANG Xinhua, CHENG Yuqing, PAN Shuguo, et al. Look-ahead distance optimization method for pure pursuit control based on time delay compensation[J]. Journal of Chinese inertial technology, 2023, 31(9): 876-882.
王威, 陈慧岩, 马建昊, 等. 基于Frenet坐标系和控制延时补偿的智能车辆路径跟踪[J]. 兵工学报, 2019, 40(11): 2336-2351.
WANG Wei, CHEN Huiyan, MA Jianhao, et al. Path tracking for intelligent vehicles based on Frenet coordinates and delayed control[J]. Acta armamentarii, 2019, 40(11): 2336-2351.
吕颖, 祁旭, 刘秋铮, 等. 考虑转向延迟特性的自动驾驶车辆路径跟踪控制方法[J]. 汽车工程, 2023, 45(12): 2234-2241.
LYU Ying, QI Xu, LIU Qiuzheng, et al. Path tracking control method with steering lag for autonomous vehicles[J]. Automotive engineering, 2023, 45(12): 2234-2241.
XU Shaobing, PENG H, TANG Yifan. Preview path tracking control with delay compensation for autonomous vehicles[J]. IEEE transactions on intelligent transportation systems, 2021, 22(5): 2979-2989.
LUAN Zhongkai, ZHANG Jinning, ZHAO Wanzhong, et al. Trajectory tracking control of autonomous vehicle with random network delay[J]. IEEE transactions on vehicular technology, 2020, 69(8): 8140-8150.
LU Lei, LIN Jinxing, REN Kanglei. H∞ output tracking control for networked control systems with network-induced delays[C]//IEEE. 2018 Chinese Control and Decision Conference. Shenyang: IEEE, 2018: 1416-1421.
CHEN Changfang, SHU Minglei, YANG Yuanyuan, et al. Robust H∞ path tracking control of autonomous vehicles with delay and actuator saturation[J]. Journal of control and decision, 2022, 9(1): 45-57.
ZHANG Bo, ZHAO Wanzhong, WANG Chunyan, et al. Layered time-delay robust control strategy for yaw stability of SbW vehicles[J]. IEEE transactions on intelligent vehicles, 2023, 8(7): 3913-3924.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构