浏览全部资源
扫码关注微信
1.中铁第一勘察设计院集团公司 环境与设备设计院,陕西 西安 710043
2.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
石怀龙,男,博士,副研究员,博士生导师,主要从事机车车辆动力学与控制方面的研究;E-mail: shi@swjtu.edu.cn
纸质出版日期:2024-07-10,
收稿日期:2024-04-15,
修回日期:2024-07-01,
移动端阅览
绳义千, 石怀龙, 陈龙飞, 等. 高速列车主动横向悬挂系统的临界时滞分析[J]. 机车电传动, 2024(4): 96-106.
SHENG Yiqian, SHI Huailong, CHEN Longfei, et al. Analysis of critical time delay in active lateral suspension systems for high-speed trains[J]. Electric drive for locomotives,2024(4): 96-106.
绳义千, 石怀龙, 陈龙飞, 等. 高速列车主动横向悬挂系统的临界时滞分析[J]. 机车电传动, 2024(4): 96-106. DOI:10.13890/j.issn.1000-128X.2024.04.012.
SHENG Yiqian, SHI Huailong, CHEN Longfei, et al. Analysis of critical time delay in active lateral suspension systems for high-speed trains[J]. Electric drive for locomotives,2024(4): 96-106. DOI:10.13890/j.issn.1000-128X.2024.04.012.
在高速列车主动悬挂系统动作的过程中,时滞现象在所难免,这在一定程度上制约了其性能的发挥。为了探究二系横向主动悬挂系统时滞现象对车辆动力学性能的影响,文章首先建立两自由度1/4车辆横向简化模型,推导出临界时滞理论计算公式;然后,建立高速列车全自由度动力学模型,在Simulink中搭建控制模块进行联合仿真,采用一阶低通滤波器模拟实际控制力的幅值衰减和相位滞后特性,研究模态天棚与PID等控制策略的时滞影响规律。仿真结果表明,随着时滞的增加,模态天棚控制策略下的车体振动迅速恶化,横向平稳性指标迅速增加至2.0以上,而PID半主动控制几乎不增加横向平稳性指标;2种控制策略在50 ms内的时滞基本不会使构架振动剧烈恶化。若采用平稳性指标作为临界时滞的判据,则除PID控制策略外的大多数策略对应的临界时滞随着车速的提高而降低。文章系统性地研究了时滞问题,对高速列车主动悬挂系统的设计和优化具有一定的指导意义。
In the actuation process of active suspension systems for high-speed trains
the phenomenon of time delay is inevitable
which to some extent restricts the performance of these systems. This paper aims to investigate the impact of time delay in secondary lateral active suspension systems on the dynamic performance of vehicles. Firstly
a simplified 1/4 vehicle lateral model with two degrees of freedom (DOF) was established
and the theoretical calculation formula for critical time delays was derived. Next
a full-DOF dynamics model of high-speed trains was developed
and a control module was built in Simulink for co-simulation. A first-order low-pass filter was subsequently used to simulate the amplitude attenuation and phase lag characteristics of actual control forces. Furthermore
the influence laws of various strategies on time delays were explored
including modal sky-hook and PID control methods. Simulation results show that as time delays increase
the modal sky-hook control strategy leads to rapid deterioration in carbody vibrations and a rapid rise in the lateral Sperling index beyond 2.0. In contrast
the PID semi-active control brings about minimal increases in the lateral Sperling index. Time delays within 50 ms under both strategies don’t cause severe deterioration in the vibrations of the bogie frames. When considering the Sperling index as the criterion for critical time delays
most control strategies other than PID control strategy resulted in decreased critical time delays with increasing train speeds. This paper presents a systematic investigation into the issue of time delays
offering guidance for the design and optimization of active suspension systems for high-speed trains.
高速列车主动横向悬挂时滞平稳性联合仿真高速动车组
high-speed trainactive lateral suspensiontime delayride comfortco-simulationhigh-speed EMU
FU Bin, LIU Binbin, GIALLEONARDO E D, et al. Semi-active control of primary suspensions to improve ride quality in a high-speed railway vehicle[J]. Vehicle system dynamics, 2023, 61(10): 2664-2688.
SHI Huailong, ZENG Jing, QU Sheng. Linear stability analysis of a high-speed rail vehicle concerning suspension parameters variation and active control[J]. Vehicle system dynamics, 2023, 61(11): 2976-2998.
SHI Huailong, ZENG Jing, GUO Jinying. Disturbance observer-based sliding mode control of active vertical suspension for high-speed rail vehicles[J/OL]. Vehicle system dynamics, 2024: 1-24. (2024-01-25) [2024-04-16]. https://doi.org/10.1080/00423114.2024.2305296https://doi.org/10.1080/00423114.2024.2305296.
LIAO Yingying, LIU Yongqiang, YANG Shaopu. Semiactive control of high-speed railway vehicle suspension systems with magnetorheological dampers[J]. Shock and vibration, 2019, 2019(1): 5279380.
YAO Yuan, WU Guosong, SARDAHI Y, et al. Hunting stability analysis of high-speed train bogie under the frame lateral vibration active control[J]. Vehicle system dynamics, 2018, 56(2): 297-318.
ZHANG Xiaoxia, WU Guosong, LI Guang, et al. Actuator optimal placement studies of high-speed power bogie for active hunting stability[J]. Vehicle system dynamics, 2020, 58(1): 108-122.
寇发荣, 王哲, 范养强, 等. EHA半主动悬架时滞补偿控制研究[J]. 汽车技术, 2017(10): 34-39.
KOU Farong, WANG Zhe, FAN Yangqiang, et al. Research on time delay compensation control of semi-active suspension with EHA[J]. Automobile technology, 2017(10): 34-39.
庞辉, 付文强, 刘凯, 等. 基于天棚控制的半主动悬架建模及稳定性分析[J]. 汽车工程, 2015, 37(10): 1167-1173.
PANG Hui, FU Wenqiang, LIU Kai, et al. Modeling and stability analysis of semi-active suspension with sky-hook control[J]. Automotive engineering, 2015, 37(10): 1167-1173.
张文丰, 翁建生, 胡海岩. 时滞对车辆悬架“天棚”阻尼控制的影响[J]. 振动工程学报, 1999(4): 50-55.
ZHANG Wenfeng, WENG Jiansheng, HU Haiyan. Effect of time delay on active vehicle suspensions equipped with "sky-hook" damper[J]. Journal of vibration engineering, 1999(4): 50-55.
宋刚, 许长城. 考虑控制时滞的车辆主动悬架随机预瞄控制[J]. 农业机械学报, 2013, 44(6): 1-7.
SONG Gang, XU Changcheng. Stochastic optimal preview control of active vehicle suspension with time-delay consideration[J]. Transactions of the Chinese society for agricultural machinery, 2013, 44(6): 1-7.
张志勇, 王建波, 蒋文杰, 等. 考虑时滞的磁流变半主动悬架控制[J]. 西华大学学报(自然科学版), 2021, 40(2): 39-46.
ZHANG Zhiyong, WANG Jianbo, JIANG Wenjie, et al. Control of magneto-rheological semi-active suspension with time delay[J]. Journal of xihua university(natural science edition), 2021, 40(2): 39-46.
陈健, 王开文, 倪平涛, 等. 控制时滞对半主动悬挂车辆动力学性能的影响[J]. 铁道机车车辆, 2006, 26(4): 9-11.
CHEN Jian, WANG Kaiwen, NI Pingtao, et al. Effects of control time lag on vehicle dynamics performances with semi-active suspensions[J]. Railway locomotive & car, 2006, 26(4): 9-11.
HUANG Caihong, ZENG Jing. Stability control of high-speed bogies using an adaptive vibration absorber[J]. Proceedings of the institution of mechanical engineers, Part F: Journal of rail and rapid transit, 2023, 238(6): 675-691.
ZHANG Zhizhou, ZHANG Lingling. Hopf bifurcation of time-delayed feedback control for maglev system with flexible guideway[J]. Applied mathematics and computation, 2013, 219(11): 6106-6112.
GUO Jinying, SHI Huailong, ZENG Jing. Bifurcation and stability analysis of a high-speed rail vehicle with active yaw dampers[J/OL]. Journal of vibration and control, 2023. (2023-09-05) [2024-01-12]. https://doi.org/10.1177/10775463231196272https://doi.org/10.1177/10775463231196272.
王凯平, 黎剑锋, 向贤虎, 等. 高速动车组半主动悬挂系统动力学性能仿真分析[J]. 机车电传动, 2012(3): 11-14.
WANG Kaiping, LI Jianfeng, XIANG Xianhu, et al. Simulation analysis on the dynamics performance of the semi-active suspension system in high-speed EMUs[J]. Electric drive for locomotives, 2012(3): 11-14.
陈晓昊, 马卫华. 控制器时滞对磁浮系统稳定性影响分析[J]. 机车电传动, 2019(2): 139-143.
CHEN Xiaohao, MA Weihua. Analysis on the effect of controller time delay on the stability of maglev system[J]. Electric drive for locomotives, 2019(2): 139-143.
秦元勋, 刘永清, 王联, 等. 带有时滞的动力系统的运动稳定性[M]. 2版. 北京: 科学出版社, 1989.
QIN Yuanxun, LIU Yongqing, WANG Lian, et al. Kinematic stability of dynamical systems with time delay[M]. 2nd ed. Beijing: Science Press, 1989.
国家铁路局. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 中国标准出版社, 2019.
National Railway Administration of the People's Republic of China. Specification for dynamic performance assessment and testing verification of rolling stock: GB/T 5599—2019[S]. Beijing: Standards Press of China, 2019.
石怀龙, 罗仁, 曾京. 国内外高速列车动力学评价标准综述[J]. 交通运输工程学报, 2021, 21(1): 36-58.
SHI Huailong, LUO Ren, ZENG Jing. Review on domestic and foreign dynamics evaluation criteria of high-speed train[J]. Journal of traffic and transportation engineering, 2021, 21(1): 36-58.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构