浏览全部资源
扫码关注微信
1.中车青岛四方机车车辆股份有限公司,山东 青岛 266111
2.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
池茂儒,男,博士,研究员,博士生导师,主要从事车辆系统动力学方面的研究;E-mail: cmr2000@163.com
纸质出版日期:2024-07-10,
收稿日期:2024-03-24,
修回日期:2024-06-17,
移动端阅览
梁海啸, 胡喆, 池茂儒, 等. 强侧风下城际列车动力学性能分析[J]. 机车电传动, 2024(4): 87-95.
LIANG Haixiao, HU Zhe, CHI Maoru, et al. Dynamic performance analysis of intercity trains under strong crosswinds[J]. Electric drive for locomotives,2024(4): 87-95.
梁海啸, 胡喆, 池茂儒, 等. 强侧风下城际列车动力学性能分析[J]. 机车电传动, 2024(4): 87-95. DOI:10.13890/j.issn.1000-128X.2024.04.011.
LIANG Haixiao, HU Zhe, CHI Maoru, et al. Dynamic performance analysis of intercity trains under strong crosswinds[J]. Electric drive for locomotives,2024(4): 87-95. DOI:10.13890/j.issn.1000-128X.2024.04.011.
为了分析国内某型城际动车组在明线平地25 m/s强侧风下非定常气动力对列车平稳性和安全性的影响,文章根据该型城际动车组实际外形和动力学参数,分别建立了8编组列车空气动力学和多体动力学模型。采用
k
-
ω
SST湍流模型计算了各节车所受的非定常气动力,将其作为外部激励输入到多体动力学模型中,形成流固耦合模型,计算了列车的风致车体振动及其安全性。结果表明,在定常强侧风下,各节车辆所受的气动力具有明显的非定常特性,其主频在0.5~7.0 Hz;在非定常气动力的作用下,各节车的横向和垂向平稳性指标均有所增大,其中头车的横向平稳性指标达到3.3,舒适度严重恶化;在较大的横向力和摇头力矩作用下,头车和尾车的车体与横向止挡发生碰撞是造成其横向振动加剧的原因;相较于无气动载荷,在25 m/s强侧风的条件下,列车头车和尾车的安全性指标明显增大,但仍保持在安全限度之内;增加横向止挡间隙、增大抗蛇行减振器和二系横向减振器的阻尼系数均可在一定程度上改善头车的风致横向振动。
This paper focused on analyzing the influence of unsteady aerodynamic forces on the stability and safety of a specific intercity electric multiple unit (EMU) model subjected to strong crosswinds of 25 m/s on level open tracks. Based on their actual geometric and dynamic parameters
aerodynamic and multi-body dynamic models were respectively established for the 8-car configuration. The
k
-
ω
SST turbulence model was
used to calculate the unsteady aerodynamic forces acting on each car. These calculation results were then incorporated into the multi-body dynamic model as external excitations
leading to the development of a fluid-solid coupling simulation model for subsequent calculations related to wind-induced carbody vibrations and safety. The results showed that the aerodynamic forces acting on each car under steady strong crosswinds exhibited obvious unsteady behaviors
with main frequencies varying from 0.5 to 7.0 Hz. The influence of these unsteady aerodynamic forces led to an increase in both the lateral and vertical Sperling indexes of each car
with the lateral Sperling index of the head car reaching 3.3
indicating a considerable deterioration in ride comfort. The collisions between the bodies of the head and tail cars and the lateral stops
under the action of large lateral forces and yaw torques
exacerbated lateral vibrations. Compared with scenarios without aerodynamic loads
the safety indexes of both the head car and tail car under strong crosswinds of 25 m/s were significantly increased
but still remained within safety limits. The wind-induced lateral vibrations of the head car could be mitigated to some extent by increasing the lateral stop clearance and increasing the damping coefficient of both the anti-yaw damper and the secondary lateral damper.
强侧风城际动车组非定常气动力动力学平稳性安全性
strong crosswindintercity EMUunsteady aerodynamic forcedynamicstabilitysafety
田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9.
TIAN Hongqi. Study evolvement of train aerodynamics in China[J]. Journal of traffic and transportation engineering, 2006, 6(1): 1-9.
BAKER C J, JONES J, LOPEZ-CALLEJA F, et al. Measurements of the cross wind forces on trains[J]. Journal of wind engineering and industrial aerodynamics, 2004, 92(7/8): 547-563.
BAKER C J. The simulation of unsteady aerodynamic cross wind forces on trains[J]. Journal of wind engineering and industrial aerodynamics, 2010, 98(2): 88-99.
SUZUKI M, TANEMOTO K, MAEDA T. Aerodynamic characteristics of train/vehicles under cross winds[J]. Journal of wind engineering and industrial aerodynamics, 2003, 91(1/2): 209-218.
CHELI F, RIPAMONTI F, ROCCHI D, et al. Aerodynamic behaviour investigation of the new EMUV250 train to cross wind[J]. Journal of wind engineering and industrial aerodynamics, 2010, 98(4/5): 189-201.
KHIER W, BREUER M, DURST F. Flow structure around trains under side wind conditions: a numerical study[J]. Computers & fluids, 2000, 29(2): 179-195.
刘加利, 于梦阁, 张继业, 等. 基于大涡模拟的高速列车横风运行安全性研究[J]. 铁道学报, 2011, 33(4): 13-21.
LIU Jiali, YU Mengge, ZHANG Jiye, et al. Study on running safety of high-speed train under crosswind by large eddy simulation[J]. Journal of the China railway society, 2011, 33(4): 13-21.
刘加利, 张继业, 张卫华. 基于大涡模拟的横风下高速列车非定常气动载荷特性[J]. 铁道学报, 2013, 35(6): 13-21.
LIU Jiali, ZHANG Jiye, ZHANG Weihua. Study on characteristics of unsteady aerodynamic loads of a high-speed train under crosswinds by large eddy simulation[J]. Journal of the China railway society, 2013, 35(6): 13-21.
张亮, 张继业, 李田, 等. 横风下高速列车的非定常气动特性及安全性[J]. 机械工程学报, 2016, 52(6): 124-135.
ZHANG Liang, ZHANG Jiye, LI Tian, et al. Unsteady aerodynamic characteristics and safety of high-speed trains under crosswinds[J]. Journal of mechanical engineering, 2016, 52(6): 124-135.
李玉坤, 周丹. 强侧风下城际动车组非定常气动特性研究[J]. 铁道科学与工程学报, 2018, 15(11): 2721-2729.
LI Yukun, ZHOU Dan. Study on the unsteady aerodynamic characteristics of a intercity EMU under strong crosswind[J]. Journal of railway science and engineering, 2018, 15(11): 2721-2729.
王政, 李田, 张继业. 不同类型横风下高速列车气动性能研究[J]. 机械工程学报, 2018, 54(4): 203-211.
WANG Zheng, LI Tian, ZHANG Jiye. Research on aerodynamic performance of high-speed train subjected to different types of crosswind[J]. Journal of mechanical engineering, 2018, 54(4): 203-211.
翟建平, 张继业, 李田. 横风下高速列车动力学参数的多目标优化[J]. 交通运输工程学报, 2020, 20(3): 80-88.
ZHAI Jianping, ZHANG Jiye, LI Tian. Multi-objective optimization for dynamics parameters of high-speed trains under side wind[J]. Journal of traffic and transportation engineering, 2020, 20(3): 80-88.
帅大洲, 徐永绥. 动车组明线运行外流场数值仿真[J]. 机械设计, 2020, 37(增刊 2): 31-34.
SHUAI Dazhou, XU Yongsui. Numerical simulation of external flow field of multiple unites running in open air[J]. Journal of machine design, 2020, 37(Suppl 2): 31-34.
韩艳, 刘叶, 胡朋. 非定常气动荷载对桥上列车行驶安全舒适性影响分析[J]. 铁道科学与工程学报, 2020, 17(1): 118-128.
HAN Yan, LIU Ye, HU Peng. Impact analysis of unsteady aerodynamic loads on the safety and comfort of trains running on bridges[J]. Journal of railway science and engineering, 2020, 17(1): 118-128.
公衍军, 黄尊地, 常宁. 横风环境高架运行的城际动车组车体气动载荷分析[J]. 铁道科学与工程学报, 2020, 17(11): 2748-2755.
GONG Yanjun, HUANG Zundi, CHANG Ning. Aerodynamic load analysis of intercity EMU car bodies operating on the viaduct under cross-wind environment[J]. Journal of railway science and engineering, 2020, 17(11): 2748-2755.
中国铁路总公司. 时速350公里中国标准动车组暂行技术条件: TJ/CL342—2014[S]. 北京:中国铁路总公司, 2014.
China Railway Corporation. Provisional technical conditions for Chinese standard EMU with a speed of 350 kilometers per hour: TJ/CL342—2014[S]. Beijing: China Railway Corporation, 2014.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构