浏览全部资源
扫码关注微信
西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
黄志辉,男,工学博士,研究员,硕士生导师,主要从事机车车辆设计和理论、车辆系统动力学、结构和强度等方面研究; E-mail: hzh_95@163.com
纸质出版日期:2024-07-10,
收稿日期:2024-03-24,
修回日期:2024-05-08,
移动端阅览
江慧, 黄志辉, 刘加蕙, 等. 单轴迫导向径向机构布置方案选型[J]. 机车电传动, 2024(4): 80-86.
JIANG Hui, HUANG Zhihui, LIU Jiahui, et al. Layout selection for single-axle forced-steering radial mechanism[J]. Electric drive for locomotives,2024(4): 80-86.
江慧, 黄志辉, 刘加蕙, 等. 单轴迫导向径向机构布置方案选型[J]. 机车电传动, 2024(4): 80-86. DOI:10.13890/j.issn.1000-128X.2024.04.010.
JIANG Hui, HUANG Zhihui, LIU Jiahui, et al. Layout selection for single-axle forced-steering radial mechanism[J]. Electric drive for locomotives,2024(4): 80-86. DOI:10.13890/j.issn.1000-128X.2024.04.010.
传统转向架通过小半径曲线时,导向轮对的冲角大,轮轨磨耗严重。双轴迫导向转向架能有效减小轮对冲角,但结构复杂,而单轴迫导向转向架结构相对简单且能有效减小导向轮对的冲角,提高车辆的曲线通过性能。因此,文章以某工程车为研究对象,分别建立了采用传统转向架、单轴迫导向转向架和双轴迫导向转向架的工程车动力学模型,对比其曲线通过性能。同时,考虑牵引力和双向运行的影响,综合分析评估径向机构安装位置与动力轮对分布位置对工程车曲线通过性能的影响,得出单轴迫导向径向机构与动力轮对的最佳布置方案,并对采用此种单轴迫导向转向架的工程车的稳定性和曲线通过性能进行分析。结果表明,其临界速度略低于采用传统转向架和双轴迫导向转向架的工程车;安装单轴迫导向径向机构能够有效减小轮轴横向力、脱轨系数和轮对冲角;与采用传统转向架的工程车相比,其轮轴横向力降低了9.51%,脱轨系数降低了11.32%,一位轮对冲角降低了52.49%。
Traditional bogies negotiating on curves with small radii result in large angles of attack for the steering wheelsets
leading to serious wheel-rail wear. Double-axle forced-steering bogies are effective in reducing such angles of attack
but they feature an intricate structure. In contrast
single-axle forced-steering bogies can also reduce these angles of attack
thereby improving the curve negotiation performance of the vehicles
while offering a comparatively simpler structure. Based on these considerations
dynamics models were established
respectively incorporating traditional bogie
double-axle forced-steering bogie
and single-axle forced-steering bogies
for a specific model of railway service cars
which served as the research object
to compare their curve negotiation performance. Additionally
the influence of the positions of the radial mechanism and power wheelset on the curve negotiation performance of the railway service cars was evaluated
considering the effects of traction force and bidirectional operation. This comprehensive analysis led to the optimal layout of the single-axle forced-steering radial mechanism and power wheelset. Furthermore
the stability and curve negotiation performance of railway service cars with this single-axle forced-steering bogie configuration were analyzed. The results show a slightly lower critical speed compared to railway service cars with traditional bogies and double-axle forced-steering bogies. The single-axle forced-steering radial mechanism configuration proves effect in reducing the lateral force on the wheelsets
the derailment coefficient
and the angle of attack for the wheelsets. Specifically
relative to the traditional bogie configuration
the lateral force on the wheelsets decreased by 9.51%
the derailment coefficient is reduced by 11.32%
and the angle of attack for the first-position wheelsets fell by 52.49%.
迫导向转向架径向机构单轴冲角脱轨系数
forced-steering bogieradial mechanismsingle-axleangle of attackderailment coefficient
孙翔. 机车径向转向架的机构分析[J]. 机车电传动, 1995(1): 1-7.
SUN Xiang. Analysis of the mechanism of self-steering loco- motive bogie[J]. Electric drive for locomotives, 1995(1): 1-7.
POLACH O. Curving and stability optimisation of locomotive bogies using interconnected wheelsets[J]. Vehicle system dynamics, 2004, 41: 53-62.
PRADHAN S, SAMANTA B, SAMANTARAY A K. Influence of active steering with adaptive control law on a metro rail vehicle wheel wear and dynamic performance[J]. Journal of mechanical science and technology, 2020, 34(4): 1415-1428.
曲天威, 罗世辉, 马卫华. 33 t轴重内燃机车方案及机车曲线黏着问题研究[J]. 铁道学报, 2020, 42(9): 39-48.
QU Tianwei, LUO Shihui, MA Weihua. Study on diesel locomotive concepts with 33 t axle load and its curving adhesion problem[J]. Journal of the China railway society, 2020, 42(9): 39-48.
李晓龙, 马卫华, 罗世辉, 等. 径向转向架机车动力学特性分析[J]. 机车电传动, 2013(6): 28-31.
LI Xiaolong, MA Weihua, LUO Shihui, et al. Dynamic performance analysis of radial bogie locomotive[J]. Electric drive for locomotives, 2013(6): 28-31.
许敦坤, 徐琳. 新型主动径向转向架单节列车动力学及轮对磨耗研究[J]. 铁道机车车辆, 2023, 43(1): 12-21.
XU Dunkun, XU Lin. Research on dynamic performance and wheel wear of single train with new active radial bogie[J]. Railway locomotive & car, 2023, 43(1): 12-21.
李芾, 傅茂海, 卜继玲. 200 km/h提速客车径向转向架动力学性能研究[J]. 铁道学报, 2004, 26(1): 22-27.
LI Fu, FU Maohai, BU Jiling. Research on the dynamics performance of the radial bogie of 200 km/h speed raised passenger cars[J]. Journal of the China railway society, 2004, 26(1): 22-27.
砥上 靖弘, 李伟平.日本银座线地铁车辆采用导向转向架的运行状况[J]. 国外铁道车辆, 2016, 53(1): 26-30.
DISHANG Jinghong, LI Weiping. Operation conditions of metro vehicles with steering bogies on ginza line in Japan[J]. Foreign rolling stock, 2016, 53(1): 26-30.
李芾, 傅茂海, 黄运华. 车辆径向转向架发展及其动力学特性[J]. 交通运输工程学报, 2003, 3(1): 1-6.
LI Fu, FU Maohai, HUANG Yunhua. Development and dynamic characteristics of radial bogies[J]. Journal of traffic and transportation engineering, 2003, 3(1): 1-6.
李金城, 丁军君, 杨阳, 等. 径向转向架地铁车辆动力学性能及车轮损伤研究[J]. 机车电传动, 2019(1): 98-103.
LI Jincheng, DING Junjun, YANG Yang, et al. Research on dynamic performance and wheel damage of metro vehicle with radial bogie[J]. Electric drive for locomotives, 2019(1): 98-103.
梁骏宇, 周张义, 杨欣, 等. 自导向转向架曲线运行轴间抗剪系统受力研究[J]. 铁道机车车辆, 2016, 36(2): 8-15.
LIANG Junyu, ZHOU Zhangyi, YANG Xin, et al. Study on stress of inter-axel shear system for self-steering bogie while curving[J]. Railway locomotive & car, 2016, 36(2): 8-15.
许自强, 董孝卿, 彭中彦, 等. 基于轮轨匹配的小曲线轮缘异常磨耗机理与控制措施[J]. 振动与冲击, 2022, 41(18): 127-133.
XU Ziqiang, DONG Xiaoqing, PENG Zhongyan, et al. Abnormal flange wear mechanism and control measures for small curve rails considering the wheel/rail matching[J]. Journal of vibration and shock, 2022, 41(18): 127-133.
王开云, 翟婉明, 封全保. 机车牵引状态下曲线通过导向特性研究[J]. 中国铁道科学, 2006, 27(2): 71-76.
WANG Kaiyun, ZHAI Wanming, FENG Quanbao. Study on the steering characteristics of curve negotiation under locomotive traction[J]. China railway science, 2006, 27(2): 71-76.
吴潇, 丁军君, 黄运华, 等. 牵引力对机车轮轨关系的影响分析[J]. 机车电传动, 2019(5): 25-28.
WU Xiao, DING Junjun, HUANG Yunhua, et al. Influence of traction force on locomotive wheel-rail relationship[J]. Electric drive for locomotives, 2019(5): 25-28.
毕鑫, 罗世辉, 马卫华. 牵引力对机车车轮轮轨黏着性能的影响分析[J]. 铁道学报, 2014(2): 18-24.
BI Xin, LUO Shihui, MA Weihua. Analysis on influence of traction force on locomotive wheel-rail adhesion performance[J]. Journal of the China railway society, 2014(2): 18-24.
沈利人, 严隽耄. 迫导向转向架低锥度失稳问题的研究[J]. 西南交通大学学报, 1991(1): 74-81.
SHEN Liren, YAN Juanmao. A study of low conicity unstable problem in forced-steering bogies[J]. Journal of southwest jiaotong university, 1991(1): 74-81.
铁道部标准计量研究所. 铁道特种车辆和轨行机械动力学性能评定及试验方法: GB/T 17426—1998[S]. 北京: 中国标准出版社, 1998.
China's Ministry of Railway, standard metrology institute. Dynamic performance evaluation and test method for particular class vehicles and tracked machine: GB/T 17426—1998[S]. Beijing: Standards Press of China, 1998.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构