浏览全部资源
扫码关注微信
中车株洲电力机车研究所有限公司,湖南 株洲 412001
刘松林,男,硕士,主要从事轨道交通电力电子电磁兼容方面的研究;E-mail: liusl7@csrzic.com
纸质出版日期:2024-07-10,
收稿日期:2024-01-10,
修回日期:2024-06-27,
移动端阅览
刘松林, 朱柄全, 王涛, 等. 轨道交通牵引系统感应电压测试与抑制技术[J]. 机车电传动, 2024(4): 51-58.
LIU Songlin, ZHU Bingquan, WANG Tao, et al. Measurement and suppression technology of induced voltage generated by traction system in rail transit applications[J]. Electric drive for locomotives,2024(4): 51-58.
刘松林, 朱柄全, 王涛, 等. 轨道交通牵引系统感应电压测试与抑制技术[J]. 机车电传动, 2024(4): 51-58. DOI:10.13890/j.issn.1000-128X.2024.04.006.
LIU Songlin, ZHU Bingquan, WANG Tao, et al. Measurement and suppression technology of induced voltage generated by traction system in rail transit applications[J]. Electric drive for locomotives,2024(4): 51-58. DOI:10.13890/j.issn.1000-128X.2024.04.006.
为了解决轨道交通列车牵引系统对轨道电路的感应干扰问题,文章深入分析了列车牵引系统基于感应耦合对轨道电路产生的干扰作用机制,根据地铁直流牵引系统的真实布局布线首次在国内实验室搭建了一套1:1还原的牵引系统感应电压测试平台,通过在实验室静态条件下模拟车辆牵引系统对轨道电路接收端产生的瞬态感应干扰,研究了牵引系统在不同运行工况以及与轨道电路在不同相对位置条件下,各种干扰部件及耦合环路对轨道电路产生的感应电压水平,确定了电阻制动时直流斩波器与制动电阻所形成的耦合回路是地铁直流牵引系统对地面轨道电路系统的最大感应干扰源。通过分析牵引系统感应发射频谱特性与斩波IGBT开关频率的关系,采用频谱管理的方法对牵引系统感应发射特征频率进行重新分配,进而错开轨道电路的工作敏感频段。试验结果表明,这种感应干扰抑制策略可有效降低车辆牵引系统对轨道电路造成的感应干扰风险。
This paper focuses on mitigating inductive interference caused by the traction systems of rail transit trains on track circuits. The initial analysis explored the interference mechanisms through inductive coupling. Based on the real layout and wiring of DC traction systems in metro applications
a 1:1-scale induced voltage testing platform for traction systems was built
as the first of its kind in domestic laboratories. This platform was employed to simulate transient inductive interference generated by train traction systems at the receiving end of track circuits under static laboratory conditions. These simulations revealed the induced voltage levels produced by different interfering components and coupling loops on track circuits
under different operating conditions of the traction systems and various relative positions of the track circuits. Moreover
the coupling circuit formed by the DC chopper and braking resistor during resistance braking was identified the maximum source of inductive interference from metro DC traction systems affecting track circuit systems. Additionally
by analyzing the relationship between the spectrum characteristics of induced emissions from the traction systems and the IGBT switching frequencies for chopping
a spectrum management method was adopted to reassign induced emissions characteristic frequencies of traction systems
resulting in staggered sensitive frequency bands for the track circuits. The experimental results demonstrate the effectiveness of the proposed inductive interference suppression strategy in reducing the risk of inductive interference caused by train traction systems on the track circuits.
牵引系统轨道电路感应电压直流斩波器频谱管理
traction systemtrack circuitinduced voltageDC chopperspectrum management
The Council of the European Union. Council directive 96/48of/EC 23 July 1996 on the interoperability of the trans-European high-speed rail system[EB/OL]. (1996-09-17) [2024-05-18]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996L0048https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31996L0048.
陈波. 机车车辆和列车检测系统兼容性标准制定历史及若干问题分析[J]. 铁道标准设计, 2020, 64(3): 170-177.
CHEN Bo. Development history of the standards on compatibility between rolling stock and train detection systems and analysis of several issues[J]. Railway standard design, 2020, 64(3): 170-177.
COSTAMAGNA E, FAVALLI L, GAMBA P, et al. Compatibility of railway cab signalling by track circuits and spread spectrum modulations with four-quadrant controller AC drives[C]//IEEE. 1999 IEEE 49th Vehicular Technology Conference. Houston: IEEE, 1999: 1182-1186.
HOLTZ J, KRAH J O. Suppression of time-varying resonances in the power supply line of AC locomotives by inverter control[J]. IEEE transactions on industrial electro-nics, 1992, 39(3): 223-229.
HOLTZ J, SPRINGOB L. Reduced harmonics PWM controlled line-side converter for electric drives[J]. IEEE transactions on industry applications, 1993, 29(4): 814-819.
FALVO M C, FEDELI E, STELLIN M, et al. Signalling system interferences due to railway electric substation failures on Italian conventional railwaynetworks[C]//IEEE. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. Taormina: IEEE, 2006: 1111-1114.
BRENNA M, CAPASSO A, FALVO M C, et al. Investigation of resonance phenomena in high speed railway supply systems: theoretical and experimental analysis[J]. Electric power systems research, 2011, 81(10): 1915-1923.
BSI. Railway applications - compatibility between rolling stock and train detection systems - part 2: compatibility with track circuits: PD CLC/TS 50238-2:2015[S]. London: BSI standards limited, 2016.
CENELEC. Railway applications - technical parameters of train detection systems for the interoperability of the trans- European railway system - part 1: track circuits: CENELEC-EN 50617-1[S]. Brussels: European Committee for Electrotechnical Standardization (CENELEC), 2015.
HOLMSTROM F R, LONG L E, GAGNON R. Assuring compatibility of rapid transit propulsion and signalling systems[C]//IEEE. 32nd IEEE Vehicular Technology Conference. San Diego: IEEE, 1982: 445-453.
TURNER D, FERNALD E, AVEIRO F, et al. EMI limits for LA metro light rail lines[C]//IEEE. 2011 IEEE Vehicular Technology Conference. San Francisco: IEEE, 2011: 1-5.
闻映红. 高速铁路信号系统的抗电磁干扰技术[J]. 北京交通大学学报, 2016, 40(4): 70-74.
WEN Yinghong. Anti-electromagnetic interference technology for high-speed railway signaling system[J]. Journal of Beijing jiaotong university, 2016, 40(4): 70-74.
HOLMSTROM F R, TURNER D, FERNALD E. Rail transit EMI-EMC[J]. IEEE electromagnetic compatibility magazine, 2012, 1(1): 79-82.
谢文磊, 李言. ZPW-2000A轨道电路占用丢失问题的分析与探讨[J]. 铁路通信信号工程技术, 2021, 18(9): 104-106.
XIE Wenlei, LI Yan. Analysis and discussion of loss of occupancy of ZPW-2000A track circuit[J]. Railway signalling & communication engineering, 2021, 18(9): 104-106.
梁先立. 电气化牵引电流对轨道电路干扰的探讨[J]. 铁路通信信号设计, 2001(1): 11-12.
LIANG Xianli. Discussion on the interference of electrified traction current on track circuits[J]. Railway communication signal design, 2001(1): 11-12.
HOLMSTROM F R. Inductive interference in rapid transit signaling systems, volume I: theory and background: UMTA-MA-06-0153-85-7[R/OL]. (1987-05-01) [2024-05-21]. https: //railroads.dot.gov/elibrary/inductive-interference- rapid-transit-signaling-systems-volume-i-theory-and-backg roundhttps://railroads.dot.gov/elibrary/inductive-interference-rapid-transit-signaling-systems-volume-i-theory-and-background.
0
浏览量
0
下载量
0
CSCD
0
CNKI被引量
关联资源
相关文章
相关作者
相关机构