浏览全部资源
扫码关注微信
1.中车长春轨道客车股份有限公司,吉林 长春 130062
2.同济大学 铁道与城市轨道交通研究院,上海;201804
李 稳(1985—),男,高级工程师,博士研究生,主要从事轨道车辆走行系统方面的研究; E-mail: liwen2.ck@crrcgc.cc
纸质出版日期:2022-07-10,
收稿日期:2022-02-18,
修回日期:2022-05-12,
扫 描 看 全 文
李稳, 陆海英, 任利惠, 等. 一种100%低地板虚拟轨道列车走行系统研究[J]. 机车电传动, 2022,(4):26-32.
LI Wen, LU Haiying, REN Lihui, et al. Research on running system of a 100% low floor virtual rail train[J]. Electric drive for locomotives, 2022,(4):26-32.
李稳, 陆海英, 任利惠, 等. 一种100%低地板虚拟轨道列车走行系统研究[J]. 机车电传动, 2022,(4):26-32. DOI: 10.13890/j.issn.1000-128X.2022.04.004.
LI Wen, LU Haiying, REN Lihui, et al. Research on running system of a 100% low floor virtual rail train[J]. Electric drive for locomotives, 2022,(4):26-32. DOI: 10.13890/j.issn.1000-128X.2022.04.004.
虚拟轨道列车是一种轨道车辆与公共汽车相结合的产物,可利用光电原理或电磁原理识别公路路面上设置的虚拟轨道并沿其行驶。为使虚拟轨道列车具有100%低地板率和满足实际运用需求的动力,设计了一种轮毂电机驱动、独立悬架结构形式的走行系统。针对这种全新设计的走行系统结构,采用动态包络计算方法对走行系统结构布局的合理性进行校核;采用有限元分析软件ANSYS建立悬架有限元模型,对主销、转向节、上下横臂及安装销等主要受力零部件静强度和疲劳强度进行分析;采用UM软件建立虚拟轨道列车动力学计算模型,对配置该走行系统的虚拟轨道列车平稳性和舒适性进行仿真分析。计算和分析结果表明:在运动状态下走行系统各零部件之间无干涉,结构空间利用合理;在各种静载荷工况下悬架主要受力零部件所承受的最大Von_Mises应力均小于对应材料屈服强度,在疲劳载荷工况下,悬架各主要受力零部件材料利用率均小于1,即悬架静强度和疲劳强度满足标准要求;列车平稳性、舒适性指标随速度的升高而升高,但在列车最高试验速度(80 km/h)范围内,平稳性指标小于2.5,属于优级,舒适性指标小于2.5,属于舒适级。因此,该虚拟轨道列车走行系统结构设计合理,参数设置满足动力学性能要求。
Virtual rail train is a product of the integration of railway vehicles and buses. It uses the principle of photoelectricity or electromagnetism to identify the virtual track set on the road surface and drive along it. In order to make virtual rail train with 100% low-floor rate and meet actual operation requirements power
a running system of wheel hub motor drive and independent suspension structure was designed. In view of this newly designed running system structure
the dynamic envelope calculation method was used to check the rationality of the running system structure layout. The finite element model of suspension system was established by using the finite element analysis software ANSYS to analyze the static strength and fatigue strength of the main load-bearing parts such as kingpin
steering knuckle
upper and lower cross arms and their mounting pins. The dynamic calculation model of virtual track train was established by UM software
and the stability and comfort of virtual track train equipped with this running system were simulated and analyzed. The calculation and analysis results show that there is no interference between the parts of the running system and the utilization of structural space is reasonable; The maximum Von-Mises stress of the main load-bearing parts is less than the yield strength of the corresponding material under various static load conditions
and under the fatigue load condition
the material utilization rate of the main load-bearing parts is less than 1
that is
the static strength and fatigue strength of the suspension system meet the standard requirements; The stability and comfort indexes of the train increase with the increase of speed
but within the range of the maximum test speed (80 km/h)
the stability indexes are less than 2.5
belonging to the excellent level
and the comfort index is less than 2.5
belonging to the comfort level. Therefore
the structure design of the virtual track train running system is reasonable
and the parameter setting meets the requirements of dynamic performance..
虚拟轨道列车走行系统结构设计动态包络强度舒适性仿真
virtual rail trainrunning systemstructural designdynamic envelopestrengthcomfortsimulation
VIS H, BOUWMAN R. The phileas-integral safety approach for an electronically guided vehicle[C]//IEEE. 2008 IEEE Intelligent Vehicles Symposium. Eindhoven, Netherlands: IEEE, 2008: 416-421.
J·毛瑞斯, V·珀耶特. 快速公交的自动引导和地理定位[J]. 现代城市轨道交通, 2008(1): 52-54.
MARAIS J, POUYET V. Automatic guidance and geolocation of bus rapid transit (BRT)[J]. Modern Urban Transit, 2008(1): 52-54.
薄纯玉. 中国中车成功研发全球首列虚拟轨道列车[J]. 城市轨道交通, 2017(2): 38-39.
BO Chunyu. CRRC successfully developed the world's first virtual rail train[J]. China Metros, 2017(2): 38-39.
曹春燕. 中车浦镇造! 全球首列数轨列车来了[EB/OL]. (2020-08-19)[2022-03-12]. https://www.yangtse.com/zncontent/773956.htmlhttps://www.yangtse.com/zncontent/773956.html.
CAO Chunyan. Made by CRRC Puzhen! Here comes the world's first digital rail train[EB/OL]. (2020-08-19)[2022-03-12]. https://www.yangtse.com/zncontent/773956.htmlhttps://www.yangtse.com/zncontent/773956.html.
邓艳红, 邹麟. 全球首列虚拟轨道列车亮相株洲 可公路行驶[EB/OL]. (2017-06-02)[2022-03-12]. https://www.icswb.com/h/152/20170602/476831.htmlhttps://www.icswb.com/h/152/20170602/476831.html.
DENG Yanhong, ZOU Lin. The world's first virtual rail train appeared in Zhuzhou and could be driven on road[EB/OL]. (2017-06-02)[2022-03-12]. https://www.icswb.com/h/152/20170602/476831.htmlhttps://www.icswb.com/h/152/20170602/476831.html.
任利惠, 李稳, 冷涵, 等. 轮胎式轨道交通车辆动力学研究现状与挑战[J]. 交通运输工程学报, 2021, 21(6): 8-30.
REN Lihui, LI Wen, LENG Han, et al. Research on dynamics of rail transit vehicle with tire running gears: state-of-arts and challenges[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 8-30.
冷涵, 任利惠, 季元进. 一种门式虚拟轨道列车及其转向循迹控制方法: CN202110055188X[P]. 2021-01-15.
LENG Han, REN Lihui, JI Yuanjin. A kind of gantry virtual rail train and its trajectory-tracking control method: CN202110055188X[P]. 2021-01-15.
孙帮成. 虚拟轨道列车及其关键技术研究[D]. 北京: 北京交通大学, 2019: 26-27.
SUN Bangcheng. Research on virtual rail train and its key technologies[D]. Beijing: Beijing Jiaotong University, 2019: 26-27.
赵昀陇, 池茂儒, 王文华, 等. 一种轮毂电机用双横臂独立悬架: CN201910740024.3[P]. 2019-08-12.
ZHAO Yunlong, CHI Maoru, WANG Wenhua, et al. A double wishbone independent suspension for hub motor: CN201910740024.3[P]. 2019-08-12.
张建杰, 冷涵. ART车辆电控悬挂系统设计方案[R]. 上海: 同济大学, 2020.
ZHANG Jianjie, LENG Han. ART vehicle electric control suspension system design scheme[R]. Shanghai: Tongji University, 2020.
全国钢标准化技术委员会. 合金结构钢: GB/T 3077—2015[S]. 北京: 中国标准出版社, 2015.
National Technical Committee for Steel Standardization. Alloy structure steels: GB/T 3077—2015[S]. Beijing: China Standards Press, 2015.
ERRI Specialists’ Committee B12. Programme of tests to be carried out on wagons with steel underframe and body structure (suitable for being fitted with the automatic buffing and draw coupler) and on their cast steel frame bogies[R].Utrecht: 5th UIC Committee, 1997.
冷涵, 孙泽良, 曾俊玮. 虚拟轨道列车振动舒适性计算报告[R]. 上海: 同济大学, 2021.
LENG Han, SUN Zeliang, ZENG Junwei. Calculation report of vibration comfort of virtual track train[R]. Shanghai: Tongji University, 2021.
国家铁路局. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 中国标准出版社, 2019.
National Railway Administration of People's Republic of China. Specification for dynamic performance assessment and testing verification of rolling stock: GB/T 5599—2019[S]. Beijing: China Standards Press, 2019.
British Standards Institution. Railway applications-ride comfort for passengers-measurement and evaluation: BS EN 12299:2009[S]. London: British Standards Institution(BSI), 2009.
0
浏览量
19
下载量
0
CSCD
2
CNKI被引量
关联资源
相关文章
相关作者
相关机构