1.华设设计集团股份有限公司 铁道规划设计研究院,江苏 南京 210014
2.兰州交通大学 机电工程学院,甘肃 兰州 730070
3.中车青岛四方机车车辆股份有限公司,山东 青岛 266111
扫 描 看 全 文
Wei WANG, Hongtai XIE, Yunfei WANG, et al. Research on the In fluence of Aerodynamic Performance of High-speed Train Air Brake Blades. [J]. Electric Drive for Locomotives 0(6):25-41(2021)
Wei WANG, Hongtai XIE, Yunfei WANG, et al. Research on the In fluence of Aerodynamic Performance of High-speed Train Air Brake Blades. [J]. Electric Drive for Locomotives 0(6):25-41(2021) DOI: 10.13890/j.issn.1000-128x.2021.06.004.
当速度大于300 km/h的高速列车紧急制动时,风阻制动是一种行之有效的辅助制动措施。基于三维定常不可压的黏性流场N-S和,k,-,ε,双方程模型,采用计算流体动力学方法对带制动风翼板的高速列车气动性能做初步分析,分别从列车所受气动阻力、垂向力、横向力、流场气动干扰效应、气动噪声等方面对首排制动风翼板在不同纵向位置、不同迎风角度和不同组风翼板纵向布置的选择做了详细计算说明。初步研究表明:①当头车车顶安装单排制动风翼板的高速列车在行驶速度为350 km/h的过程中采取紧急制动时,列车所受的空气制动阻力比未安装风翼板时增大约45%,所受垂向升力增大约70%;②采用风阻制动时制动风翼板迎风面所受最大压力和平均压力随着速度增大从远环境压力值呈抛物线形式增加,所受最小压力从远环境压力值呈倒抛物线形式减小;③在首排风翼板安装位置距离头车司机室前端流线型尾端连接处2 m范围内,列车空气阻力随着距离的增大而降低,所受垂向升力基本保持不变,风翼板前后形成的正负压区范围逐渐变小减弱;④首排制动风翼板迎风角在45°~90°内逐渐扩大时,列车所受空气阻力基本保持不变,垂向升力呈先增大后缓降的趋势,气动干扰效应和风翼板迎风面的高压区域逐步减弱;⑤在列车头车车顶最大等间距布置多组制动风翼板时,随着风翼板布置组数的增多,列车承受的空气阻力缓慢增加,垂向升力基本保持不变,制动风翼板间气动干扰效应逐渐增强,风翼板迎风面受压呈现出第1组的受压最大,后续各组压力峰值基本保持一致,略有波动。
When the emergency braking of high-speed trains is greater than 300 km/h, wind resistance braking is an effective auxiliary braking measure. In this paper, based on the N-S and ,k,-,ε, double equation model of the three-dimensional steady incompressible viscous flow field, a preliminary analysis of the aerodynamic performance of the high-speed train with brake wing panels was carried out with the computational fluid dynamics method. Directional force, vertical lift, lateral force, gas flow field aerodynamic interference effect and aerodynamic noise were calculated and explained in detail on the selection of different longitudinal positions, different upwind angles and different sets of longitudinal arrangement of the first row of wind wing panels. Preliminary research shows that: ① When a single-row brake wing panel is installed on the roof of a 350 km/h high-speed train headway for emergency braking, the air brake resistance of the train will increase by approximately 45% compared with that without the wing panel, and the vertical lift will increase by approximately 70%; ② When using wind resistance braking, the maximum pressure and average pressure on the windward surface of the brake wing plate increase in the form of parabola from the far ambient pressure value with the increase of speed, and the minimum pressure decreases in the form of inverted parabola from the far ambient pressure value; ③ The installation position of the first row of wind wing panels is within 2 m of the streamlined tail joint at the front of the driver's cab, the air resistance of the train decreases as the distance increases, and the vertical lift is basically unchanged. The range of positive and negative pressure zones formed before and after the wind wing panels gradually becomes smaller and weaker;④ When the windward angle of the first row brake wing plate is gradually expanded within 45 ° ~ 90 °, the air resistance of the train remains basically unchanged, the vertical lift increases first and then decreases slowly, and the aerodynamic interference effect and the high-pressure area on the windward surface of the wing plate are gradually weakened; ⑤ When multiple sets of brake wing panels are arranged on the roof of the head train at maximum equal intervals, as the number of wing panel arrangements increases, the air resistance experienced by the train increases slowly, and the vertical lift received remains basically unchanged. The aerodynamic interference effect between the wind wing plates gradually increased. The pressure on the windward side of the wind wing plates show that the first group is much larger than the subsequent groups, and the pressure peaks of the subsequent groups remain basically the same, with slight fluctuations.
高速列车空气动力学气动特性气动噪声制动风翼板空气阻力数值模拟仿真
high-speed trainsaerodynamicsaerodynamic characteristicsaerodynamic noisebrake wing panelair resistancenumerical modelingsimulation
田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007: 171-185.
TIAN Hongqi. Train aerodynamics[M]. Beijing: China Railway Publishing House, 2007: 171-185.
杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(1): 217-460.
YANG Guowei, WEI Yujie, ZHAO Guilin, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(1): 217-460.
田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9.
TIAN Hongqi. Study evolvement of train aerodynamics in China[J]. Journal of Traf fic and Transportation Engineering, 2006, 6(1): 1-9.
梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
MEI Yuangui, ZHOU Chaohui, XU Jianlin. Aerodynamics of high speed railway tunnels[M]. Beijing: Science Press, 2009.
BAKER C. The flow around high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6/7): 277-298.
BROCKIE N J W, BAKER C J. The aerodynamic drag of high speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 34(3): 273-290.
BAKER C J. Train aerodynamic forces and moments from moving model experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 24(3): 227-251.
KRAJNOVIĆ S. Shape optimization of high-speed trains for improved aerodynamic performance[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(5): 439-452.
KRAJNOVIĆ S. Optimization of aerodynamic properties of high-speed trains with CFD and response surface models[M]//BROWAND F, MCCALLEN R, ROSS J. The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009: 197-211.
LEE M K, BHANDARI B. The application of aerodynamic brake for high-speed trains[J]. Journal of Mechanical Science and Technology, 2018, 32(12): 5749-5754.
高見創, 卢笑山. 新干线小型分散式风阻制动装置的开发[J]. 国外铁道车辆, 2015, 52(4): 29-36.
GAO Jianchuang, LU Xiaoshan. Development of small-sized distributed aerodynamic brake for Shinkansen[J]. Foreign Rolling Stock, 2015, 52(4): 29-36.
YOSHIMURA M, SAITO S, HOSAKA S, et al. Characteristics of the aerodynamic brake of the vehicle on the Yamanashi maglev test line[J]. Quarterly Report of RTRI, 2000, 41(2): 74-78.
池田春男. 日本磁悬浮铁路——山梨实验线[J]. 林峰,译. 国外铁道车辆, 2000, 37(4): 28-30.
IKEDA H. Magnetic levitated railway in Japan-Yamanashi experimental track[J]. Foreign Rolling Stock, 2000, 37(4): 28-30.
孙文静, 田春, 周劲松, 等. 高速列车空气动力制动会车动力学性能[J]. 同济大学学报(自然科学版), 2014, 42(9): 1401-1407.
SUN Wenjing, TIAN Chun, ZHOU Jinsong, et al. Dynamics performance of high-speed train with aerodynamic brake under crossing[J]. Journal of Tongji University(Natural Science), 2014, 42(9): 1401-1407.
高立强, 奚鹰, 王国华, 等. 基于CFD的高速列车空气动力制动风翼板型研究[J]. 中国工程机械学报, 2015, 13(3): 236-241.
GAO Liqiang, XI Ying, WANG Guohua, et al. CFD-based study on aerodynamic brake wind-panel forms for high-speed trfferain[J]. Chinese Journal of Construction Machinery, 2015, 13(3): 236-241.
GAO Liqiang, XI Ying, WANG Guohua, et al. Opening angle rules of the aerodynamic brake panel[J]. Journal of Donghua University(English Edition), 2016, 33(1): 20-24.
LIU G W. Feature description for streamlined structure[J]. Applied Mechanics and Materials, 2010, 34/35: 1284-1288.
田春, 吴萌岭, 任利惠, 等. 空气动力制动研究初探[J]. 铁道车辆, 2009, 47(3): 10-12.
TIAN Chun, WU Mengling, REN Lihui, et al. Initial discussion of research in aerodynamic brake[J]. Rolling Stock, 2009, 47(3): 10-12.
TIAN H Q. Formation mechanism of aerodynamic drag of high-speed train and some reduction measures[J]. Journal of Central South University of Technology, 2009, 16(1): 166-171.
王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 24-50.
WANG Fujun. Computational fluid dynamics analysis:principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004: 24-50.
李田, 张继业, 张卫华. 横风下高速列车通过挡风墙动力学性能[J]. 铁道学报, 2012, 34(7): 30-35.
LI Tian, ZHANG Jiye, ZHANG Weihua. Dynamic performance of high-speed train passing windbreak in crosswind[J]. Journal of the China Railway Society, 2012, 34(7): 30-35.
李田, 张继业, 张卫华. 高速列车流固耦合的平衡状态方法[J]. 机械工程学报, 2013, 49(2): 95-101.
LI Tian, ZHANG Jiye, ZHANG Weihua. Co-simulation of high-speed train fluid-structure interaction based on the equilibrium state[J]. Journal of Mechanical Engineering, 2013, 49(2): 95-101.
祝志文, 陈伟芳, 陈政清. 横风中双层客车车辆的风荷载研究[J]. 国防科技大学学报, 2001, 23(5): 117-121.
ZHU Zhiwen, CHEN Weifang, CHEN Zhengqing. A survey on wind loads for double-deck vehicle in cross wind[J]. Journal of National University of Defense Technology, 2001, 23(5): 117-121.
KHIER W, BREUER M, DURST F. Flow structure around trains under side wind conditions: a numerical study[J]. Computers & Fluids, 2000, 29(2): 179-195.
FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society A-Mathematical, Physical and Engineering Sciences, 1969, 264(1151): 321-342.
LIGHTHILL M J. On sound generated aerodynamically.I. General theory[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1952, 211(1107): 564-587.
胡颖, 孙刚, 李亚林, 等. 基于FW-H方程的飞机低速构型气动噪声计算[J]. 复旦学报(自然科学版), 2013, 52(2): 177-182.
HU Ying, SUN Gang, LI Yalin, et al. Aero-acoustic calculation of aircraft high-lift device based on FW-H equation[J]. Journal of Fudan University(Natural Science), 2013, 52(2): 177-182.
LOWSON M V. The sound field for singularities in motion[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1965, 286(1407): 559-572.
张亚东, 张继业, 李田, 等. 拖车转向架气动噪声数值研究[J]. 机械工程学报, 2016, 52(16): 106-116.
ZHANG Yadong, ZHANG Jiye, LI Tian, et al. Numerical research on aerodynamic noise of trailer bogie[J]. Journal of Mechanical Engineering, 2016, 52(16): 106-116.
田春, 吴萌岭, 费巍巍, 等. 空气动力制动制动风翼纵向位置制动力规律[J]. 同济大学学报(自然科学版), 2011, 39(5): 705-709.
TIAN Chun, WU Mengling, FEI Weiwei, et al. Rule of aerodynamics braking force in longitudinal different position of high-speed train[J]. Journal of Tongji University(Natural Science), 2011, 39(5): 705-709.
谢红太. 强侧风对时速350 km高速列车气动性能影响分析[J]. 华东交通大学学报, 2019, 36(3): 7-15.
XIE Hongtai. In fluence of strong crosswind on aerodynamic performance of high speed train at the speed of 350 km/h[J]. Journal of East China Jiaotong University, 2019, 36(3): 7-15.
谢红太. 350 km/h高速列车过特长双线隧道时表面压力分布数值模拟分析[J]. 华东交通大学学报, 2019, 36(4): 24-31.
XIE Hongtai. Numerical simulation analysis of surface pressure distribution of 350 km/h high speed train passing through extra long double tunnel[J]. Journal of East China Jiaotong University, 2019, 36(4): 24-31.
谢红太. 高速列车过特长双线隧道时列车及隧道表面所受静压的数值模拟分析方法: CN201810572539.2[P]. 2018-06-07.
XIE Hongtai. Numerical simulation analysis method of static pressure on train and tunnel surface when high-speed train passes through extra long double track tunnel: CN201810572539.2[P]. 2018-06-07.
武振锋, 卫晓娟, 陈周锋, 等. 椭球型高速列车头车设计与阻力特性数值模拟[J]. 兰州大学学报(自然科学版), 2015, 51(5): 711-715.
WU Zhenfeng, WEI Xiaojuan, CHEN Zhoufeng, et al. Design of ellipsoid-shaped head cars and numerical simulations on their aerodynamic drag performance[J]. Journal of Lanzhou University(Natural Sciences), 2015, 51(5): 711-715.
姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34(7): 18-23.
YAO Shuanbao, GUO Dilong, YANG Guowei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7): 18-23.
高畅, 张继业, 李田, 等. 高速列车首排风阻制动板气动特性研究[J]. 铁道标准设计, 2020, 64(6): 172-176.
GAO Chang, ZHANG Jiye, LI Tian, et al. Research on aerodynamic characteristics of front brake panel of high-speed train[J]. Railway Standard Design, 2020, 64(6): 172-176.
高立强, 奚鹰, 邓阁, 等. 空气动力制动风翼板气动干扰效应研究[J]. 机械设计, 2015, 32(9): 19-24.
GAO Liqiang, XI Ying, DENG Ge, et al. Research on the aerodynamic interference effects of the brake panel[J]. Journal of Machine Design, 2015, 32(9): 19-24.
0
Views
114
下载量
0
CSCD
6
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution