Wenye LIU, Lixuan KANG, Haitao LIU, et al. Research on High Reliability Traction Converter IGBT Active Junction Temperature Control. [J]. Electric Drive for Locomotives (5):115-122(2021)
DOI:
Wenye LIU, Lixuan KANG, Haitao LIU, et al. Research on High Reliability Traction Converter IGBT Active Junction Temperature Control. [J]. Electric Drive for Locomotives (5):115-122(2021) DOI: 10.13890/j.issn.1000-128x.2021.05.018.
Research on High Reliability Traction Converter IGBT Active Junction Temperature Control
The application conditions of rail transit converter are relatively strict, which requires high reliability and service life of converter and IGBT devices. In order to improve the junction temperature of IGBT and the application life and reliability of the converter, a general loss calculation model was constructed based on the working mode of locomotive converter module to realize the on-line estimation of the junction temperature of IGBT devices of the converter; On this basis, combined with the application scenario of rail transit, a comprehensive active junction temperature control method was designed from the two dimensions of switching loss and heat dissipation system. Simulation and experiments showed that the implementation of active junction temperature control was feasible.
关键词
变流器IGBT损耗结温估计主动控制仿真
Keywords
converterIGBTlossjunction temperature estimationactive controlsimulation
references
LEMMENS Joris, VANASSCHE Piet, DRIESEN Johan. Optimal control of traction motor drives under electrothermal constraints[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(2): 249-263.
HELD M, JACOB P, NICOLETTI G, et al. Fast power cycling test of IGBT modules in traction application[J]. Proceedings of Second International Conference on Power Electronics and Drive Systems, 1997(1): 425-430. DOI: 10.1109/peds.1997.618742http://doi.org/10.1109/peds.1997.618742.
WEI Lixiang, MCGUIRE Jeffrey, LUKASZEWSKI Richard A. Analysis of PWM frequency control to improve the lifetime of PWM inverter[J]. IEEE Transactions on Industry Applications, 2011, 47(2): 922-929.
LEMMENS Joris, DRIESEN Johan, VANASSCHE Piet. Thermal management in traction applications as constraint optimal control problem[C]//IEEE. 2012 IEEE Vehicle Power and Propulsion Conference. Seoul: IEEE, 2012: 36-41. DOI: 10.1109/VPPC.2012.6422652http://doi.org/10.1109/VPPC.2012.6422652.
ANDRESEN Markus, BUTICCHI Giampaolo, FALCK Johannes, et al. Active thermal management for a single-phase H-bridge inverter employing switching frequency control[C]//IEEE. Proceedings of PCIM Europe 2015. Nuremberg: IEEE, 2015: 1-8.
BIFARETTI S, TARISCIOTTI L, WATSON A J, et al. Distributed commutations pulse-width modulation technique for high-power AC/DC multi-level converters[J]. IET Power Electronics, 2012, 5(6): 909-919. DOI: 10.1049/iet-pel.2011.0281http://doi.org/10.1049/iet-pel.2011.0281.
DU Xiong, LI Gaoxian, LI Tengfei, et al. A hybrid modulation method for improving the lifetime of power modules in the wind power converter[J]. Proceedings of the CSEE, 2015, 35(19): 5003-5012.
MURDOCK D A, TORRES J E R, CONNORS J J, et al. Active thermal control of power electronic modules[J]. IEEE Transactions on Industry Applications, 2006, 42(2): 552-558. DOI: 10.1109/TIA.2005.863905http://doi.org/10.1109/TIA.2005.863905.
WU Liang, CASTELLAZZI Alberto. Temperature adaptive driving of power semiconductor devices[C]//IEEE. 2010 IEEE International Symposium on Industrial Electronics. Bari: IEEE, 2010. DOI: 10.1109/ISIE.2010.5636541http://doi.org/10.1109/ISIE.2010.5636541.
LUO Haoze, LANNUZZO Francesco, MA Ke, et al. Active gate driving method for reliability improvement of IGBTs via junction temperature swing reduction[C]//IEEE. 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Vancouver: IEEE, 2016. DOI: 10.1109/PEDG.2016.7527079http://doi.org/10.1109/PEDG.2016.7527079.
WANG Bo, ZHOU Luowei, ZHANG Yi, et al. A method of active junction temperature control for IGBT[C]//IEEE. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. Beijing: IEEE, 2017. DOI: 10.1109/IECON.2017.8217388http://doi.org/10.1109/IECON.2017.8217388.
ZHOU Luowei, ZHANG Yi, WANG Bo. IGBT thermal management method based on snubber capacitor[J]. Electric Machines and Control, 2019, 23(4): 28-36.
WANG Xubin, WANG Xuemei, YUAN Xun. An optimal DC bus voltage control method to improve the junction temperature of IGBTs in low speed operations of traction applications[C]//IEEE. 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC). Auckland: IEEE, 2016. DOI: 10.1109/SPEC.2016.7846201http://doi.org/10.1109/SPEC.2016.7846201.
WANG Xiang, WANG Yun, CASTELLAZZI Alberto. Reduced active and passive thermal cycling degradation by dynamic active cooling of power modules[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD). Hong Kong: IEEE, 2015: 309-312. DOI: 10.1109/ISPSD.2015.7123451http://doi.org/10.1109/ISPSD.2015.7123451.
WANG Xiang, CASTELLAZZI Alberto, ZANCHETTA P. Temperature control for reduced thermal cycling of power devices[C]//IEEE. 2013 15th European Conference on Power Electronics and Applications (EPE). Lille: IEEE, 2013. DOI: 10.1109/EPE.2013.6631742http://doi.org/10.1109/EPE.2013.6631742.
LI Cong, JIAO Da, JIA Jizhou, et al. Thermoelectric cooling for power electronics circuits: modeling and active temperature control[J]. IEEE Transactions on Industry Applications, 2014, 50(6): 3995-4005. DOI: 10.1109/TIA.2014.2319576http://doi.org/10.1109/TIA.2014.2319576.