1.电子科技大学 电子科学与工程学院,四川 成都 610054
2.电子科技大学 广东电子信息工程研究院,广东 东莞 523808
扫 描 看 全 文
Chao CHEN, Xu LI, Wei HUANG, et al. Study on Anti-surge Capacity of Body Diode of 1 200 V SiC MOSFET. [J]. Electric Drive for Locomotives (5):33-37(2021)
Chao CHEN, Xu LI, Wei HUANG, et al. Study on Anti-surge Capacity of Body Diode of 1 200 V SiC MOSFET. [J]. Electric Drive for Locomotives (5):33-37(2021) DOI: 10.13890/j.issn.1000-128x.2021.05.005.
对1 200 V碳化硅金属氧化物场效应晶体管(SiC MOSFET)(包括双沟槽型栅极结构、非对称沟槽型栅极结构和平面型栅极结构)的抗浪涌能力进行了试验测试分析与评估。其中,平面型SiC MOSFET展现出了最优的抗浪涌能力,最大浪涌电流密度峰值达到了35 A/mm,2,,而双沟槽型与非对称沟槽型SiC MOSFET的抗浪涌能力大致相等,分别为22 A/mm,2,和25 A/mm,2,。在经过最大浪涌电流后,3种SiC MOSFET器件的门极阈值电压、漏极电流和击穿电压均发生了失效,其失效原理均为热击穿而导致的三端短路。对比测试结果表明,平面型SiC MOSFET由于较少的栅氧化层缺陷而展现出良好抗浪涌电流能力,而双沟槽型SiC MOSFET由于浪涌应力下的沟道处泄漏电流导致更强的热效应,更容易在浪涌测试中发生失效。
The anti-surge capability of the body diode of 1 200 V planar, double trench and asymmetric trench SiC MOSFETs was compared and analyzed by experiment. The planar SiC MOSFET shows the best anti-surge ability, and the maximum surge current density peak reaches 35 A/mm,2, while the anti-surge ability of double groove and asymmetric groove SiC MOSFET is roughly the same, 22 A/mm,2, and 25 A/mm,2, respectively. After the maximum surge current, the threshold voltage, drain current and breakdown voltage of the three SiC MOSFET devices fail. The failure mechanism is a three terminal short circuit caused by thermal breakdown.The comparative test results show that the planar SiC MOSFET shows good anti-surge current ability due to lower gate oxide defects,while the double channel SiC MOSFET is more likely to fail in surge test due to stronger thermal effect caused by channel leakage current under surge stress.
浪涌能力碳化硅金属氧化物场效应晶体管浪涌失效机制体二极管
surge capabilitysilicon carbideMOSFETsurge failure mechanismbody diode
KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 1-27. DOI: 10.7567/JJAP.54.040103http://doi.org/10.7567/JJAP.54.040103.
MILLÁN J, FRIEDRICHS P, MIHAILA A, et al. High-voltage SiC devices: diodes and MOSFETs[C]//IEEE. 2015 International Semiconductor Conference (CAS). Sinaia: IEEE, 2015: 11-18. DOI: 10.1109/SMICND.2015.7355148http://doi.org/10.1109/SMICND.2015.7355148.
BRUNT E V, LICHTENWALNER D J, LEONARD R, et al. Reliability assessment of a large population of 3.3 kV, 45 A 4H-SIC MOSFETs[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Sapporo: IEEE, 2017: 251-254. DOI: 10.23919/ISPSD.2017.7988907http://doi.org/10.23919/ISPSD.2017.7988907.
TREU M, RUPP R, SOLKNER G. Reliability of SiC power devices and its influence on their commercialization-review, status, and remaining issues[C]//IEEE. 2010 IEEE International Reliability Physics Symposium. Anaheim: IEEE, 2010: 156-161. DOI: 10.1109/IRPS.2010.5488834http://doi.org/10.1109/IRPS.2010.5488834.
LELIS A J, Green R, HABERSAT D B, et al. Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs[J]. IEEE Transactions on Electron Devices, 2015, 62(2): 316-323. DOI: 10.1109/TED.2014.2356172http://doi.org/10.1109/TED.2014.2356172.
STAHBUSH R E, MAHADIK N A. Defects affecting SiC power device reliability[C]//IEEE. 2018 IEEE International Reliability Physics Symposium (IRPS), Burlingame: IEEE, 2018. DOI: 10.1109/IRPS.2018.8353546http://doi.org/10.1109/IRPS.2018.8353546.
SAUVAGE A, BUI L, MONNEREAU N, et al. New concept using silicon carbide current limiter device for lightning surge protection of embedded aircraft equipment[C]//IEEE. 2013 International Symposium on Electromagnetic Compatibility. Brugge: IEEE, 2013: 786-792.
CHEUNG W, DAY D, TAMMEN T, et al. New concept for lightning surge protection of avionics using 4H-SiC current limiter[C]//IEEE. 2013 International Symposium on Electromagnetic Compatibility. Brugge: IEEE, 2013: 793-798.
BJOERK F, HANCOCK J, TREU M, et al. 2nd generation 600V SiC schottky diodes use merged pn/schottky structure for surge overload protection[C]//IEEE. Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition. Dallas: IEEE, 2006: 4-10. DOI: 10.1109/APEC.2006.1620534http://doi.org/10.1109/APEC.2006.1620534.
CALDWELL J D, STAHLBUSH R E, IMHOFF E A, et al. Recombination-induced stacking fault degradation of 4H-SiC merged-PiN-Schottky diodes[J]. Journal of Applied Physics, 2009, 106(4): 044504.1-044504.6. DOI: 10.1063/1.3194323http://doi.org/10.1063/1.3194323.
HUANG X, WANG G, LI J, et al. Ruggedness analysis of 600 V 4H-SiC JBS diodes under repetitive avalanche conditions[C]//IEEE. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition(APEC). Orlando: IEEE, 2012: 1688-1691. DOI: 10.1109/APEC.2012.6166048http://doi.org/10.1109/APEC.2012.6166048.
SADIK D, COLMENARES J, TOLSTOY G, et al. Short-circuit protection circuits for silicon-carbide power transistors[J]. IEEE Transactions on Industrial Electronics, 2016, 63(4): 1995-2004. DOI: 10.1109/TIE.2015.2506628http://doi.org/10.1109/TIE.2015.2506628.
CARASTRO F, MARI J, ZOELS T, et al. Investigation on diode surge forward current ruggedness of Si and SiC power modules[C]//IEEE. 2016 18th European Conference on Power Electronics and Applications(EPE’16 ECCE Europe). Karlsruhe: IEEE, 2016. DOI: 10.1109/EPE.2016.7695685http://doi.org/10.1109/EPE.2016.7695685.
HEINZE B, LUTZ J, NEUMEISTER M, et al. Surge current ruggedness of silicon carbide schottky- and merged-pin-schottky diodes[C]//IEEE. 2008 20th International Symposium on Power Semiconductor Devices and IC's. Orlando: IEEE, 2008. DOI: 10.1109/ISPSD.2008.4538944http://doi.org/10.1109/ISPSD.2008.4538944.
SADIK D, HEINIG S, JACOBS K, et al. Investigation of the surge current capability of the body diode of SiC MOSFETs for HVDC applications surge current requirements for HVDC converters[C]//IEEE. 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe). Karlsruhe: IEEE, 2016. DOI: 10.1109/EPE.2016.7695448http://doi.org/10.1109/EPE.2016.7695448.
ZHU Zhengyun, XU Hongyi, LIU Li, et al. Investigation on surge current capability of 4H-SiC trench-gate MOSFETs in third quadrant under various VGS biases[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020. DOI: 10.1109/JESTPE.2020.3028094http://doi.org/10.1109/JESTPE.2020.3028094.
JIANG Xi, ZHAI Dongyuan, CHEN Jianjun, et al. Comparison study of surge current capability of body diode of SiC MOSFET and SiC schottky diode[C]//IEEE. 2018 IEEE Energy Conversion Congress and Exposition(ECCE), Portland: IEEE, 2018: 845-849. DOI: 10.1109/ECCE.2018.8558388http://doi.org/10.1109/ECCE.2018.8558388.
JIANG Xi, WANG Jun, CHEN Jianjun, et al. Investigation on degradation of SiC MOSFET under surge current stress of body diode[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(1): 77-89. DOI: 10.1109/JESTPE.2019.2952214http://doi.org/10.1109/JESTPE.2019.2952214.
HOFSTETTER P, BAKRAN M. Predicting failure of SiC MOSFETs under short circuit and surge current conditions with a single thermal model[C]//IEEE. 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe). Riga: IEEE, 2018.
LI Huan, WANG jue, REN Na, et al. Investigation of 1 200 V SiC MOSFETs’surge reliability[J]. Micromachines, 2019, 10(7): 485-502. DOI: 10.3390/mi10070485http://doi.org/10.3390/mi10070485.
NEL B, PERINPANAYAGAM S. A brief overview of SiC MOSFET failure modes and design reliability[J]. Procedia CIRP, 2017(59): 280-285. DOI: 10.1016/j.procir.2016.09.025http://doi.org/10.1016/j.procir.2016.09.025.
NGUYEN T, AHMED A, THANG T, et al. Gate oxide reliability issues of SiC MOSFETs under short-circuit operation[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2445-2455. DOI: 10.1109/TPEL.2014.2353417http://doi.org/10.1109/TPEL.2014.2353417.
AFANASEV V, BASSLER M, PENSL G, et al. Intrinsic SiC/SiO2 interface states[J]. Physica Status Solidi Applied Research, 1997, 162(1): 321-337. DOI: 10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-Fhttp://doi.org/10.1002/1521-396X(199707)162:1<321::AID-PSSA321>3.0.CO;2-F.
NAWAZ M. On the evaluation of gate dielectrics for 4H-SiC based power MOSFETs[J]. Active and Passive Electronic Components, 2015(8): 1-12. DOI: 10.1155/2015/651527http://doi.org/10.1155/2015/651527.
0
Views
19
下载量
0
CSCD
1
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution