1.天津工业大学 电气学院,天津 300387
2.天津工业大学 机械工程学院,天津 300387
3.广州汉源新材料股份有限公司,广东 广州 510705
扫 描 看 全 文
Yunhui MEI, Xinyan LU, Kun DU, et al. Research Progress of Package Interconnection Methods Based on Low-Temperature Sintered Silver. [J]. Electric Drive for Locomotives (5):21-27(2021)
Yunhui MEI, Xinyan LU, Kun DU, et al. Research Progress of Package Interconnection Methods Based on Low-Temperature Sintered Silver. [J]. Electric Drive for Locomotives (5):21-27(2021) DOI: 10.13890/j.issn.1000-128x.2021.05.003.
随着电子电力技术的进步,功率器件朝着高功率密度、高集成度的方向不断发展。互连层作为功率模块热量传输的关键通道,对实现功率模块高温可靠应用具有重要影响。低温烧结银具有工艺温度低、互连强度高、工作温度高、导电性强、导热性强等优异特性,已成为封装互连材料的研究热点。但烧结驱动力需求高、烧结致密度低和“热-机械”应力高等诸多缺陷限制了低温烧结银技术在大面积封装互连领域的广泛应用。文章从材料和工艺角度对现有研究方法和成果进行了归纳总结和比较分析,并在此基础上提出了低温烧结银封装互连技术的研究重点和发展方向,对拓展低温烧结银技术的应用具有重要意义。
With the advancement of electronic power technology, power devices are constantly developing towards high power density and high integration. The interconnect layer, as a key channel for heat transfer in power modules, has an important impact on the realization of high-temperature and reliable applications of power modules. Low-temperature sintered silver has become one of the research focus on packaging interconnect materials due to its excellent characteristics such as low process temperature, high interconnect strength, high operating temperature, high electrical conductivity, and high thermal conductivity. However, the high sintering driving force requirement, low sintering density, and high thermal-mechanical stress limit the wide application of low temperature sintered silver technology in the field of large-area package interconnects. The existing research methods and results from the material and process viewpoints were summarized and compared, and the research focus and development direction of low-temperature sintered silver packaging interconnect technology were proposed, which was important for expanding the application of low-temperature sintered silver technology.
低温烧结银封装互连烧结驱动力烧结致密度热-机械应力
low-temperature sintered silverpackage interconnectionsintering driving forcesintering densitythermal-mechanical stress
WATSON J, CASTRO G. High-temperature electronics pose design and reliability challenges[J]. Analog Dialogue, 2012, 46(4): 1-7.
JOHNSON R W, EVANS J L, JACOBSEN P, et al. The changing automotive environment: high-temperature electronic[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2004, 27(3): 164-176.
YANG J. A silicon carbide wireless temperature sensing system for high temperature applications[J]. Sensors, 2013, 13(2): 1884-1901.
MA K, LISERRE M, BLAABJERG F, et al. Thermal loading and lifetime estimation for power device considering mission profiles in wind power converter[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 590-602.
LEE C C, KAO K S, LIN L, et al. Investigation of pre-bending substrate design in packaging assembly of an IGBT power module[J]. Microelectronic Engineering, 2014, 120: 106-113.
YAN H D, LIANG P J, MEI Y H, et al. Brief review of silver sinter-bonding processing for packaging high-temperature power devices[J]. Chinese Journal of Electrical Engineering, 2020, 6(3): 25-34.
YANG Y H, DORN-GOMBA L, RODRIGUEZ R, et al. Automotive power module packaging: current status and future trends[J]. IEEE Access, 2020, 8: 160126-160144.
MANIKAM V R, CHEONG K Y. Die attach materials for high temperature applications: A review[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(4): 457-478.
WU C, CHENG S, SHENG Y, et al. Reduction-assisted sintering of micron-sized copper powders at low temperature by ethanol vapor[J]. RSC Advances, 2015, 5(66): 53275-53279.
SCHERER G W. Sintering of low-density glasses: I, Theory[J]. Journal of the American Ceramic Society, 1977, 60(5/6): 236-239.
姜涵宁. 功率模块中大面积烧结连接工艺及可靠性研究[D]. 天津: 天津大学, 2019.
JIANG Hanning. Study on large-area sintering process and reliability in power modules[D]. Tianjin: Tianjin University, 2019.
FU S, MEI Y, LU G Q, et al. Pressureless sintering of nanosilver paste at low temperature to join large area (≥100 mm2) power chips for electronic packaging[J]. Materials Letters, 2014, 128: 42-45.
CHEN C T, SUGANUMA K. Large-scale ceramic-metal joining by nano-grained Ag particles paste sintering in low-temperature pressure-less conditions[J]. Scripta Materialia, 2021, 195: 113747.
FU S C, ZHAO M, SHAN H Y, et al. Fabrication of large-area interconnects by sintering of micron Ag paste[J]. Materials Letters, 2018, 226: 26-29.
LIU C L, MOHN F B, SCHUDERER J, et al. Novel large-area attachment for high-temperature power electronics module application[C]//IEEE. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). Orlando: IEEE, 2017: 1547-1552. DOI: 10.1109/ECTC.2017.143http://doi.org/10.1109/ECTC.2017.143.
WANG W G, ZOU G S, JIA Q, et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science & Engineering:A, 2020, 793: 139894.
REN H, ZOU G S, ZHAO Z Y, et al. High-reliability wireless packaging for high-temperature SiC power device sintered by novel organic-free nanomaterial[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10(12): 1953-1959.
MOHD ZUBIR N S, ZHANG H Q, ZOU G S, et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature[J]. Journal of Electronic Materials, 2019, 48(11): 7562-7572.
HEUCK N, LANGER A, STRANZ A, et al. Analysis and modeling of thermomechanically improved silver-sintered die-attach layers modified by additives[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1(11): 1846-1855.
ZHANG H, NAGAO S, SUGANUMA K, et al. Thermostable Ag die-attach structure for high-temperature power devices[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(2): 1337-1344.
ZHANG H, NAGAO S, SUGANUMA K. Addition of SiC particles to Ag die-Attach paste to improve high-temperature stability: Grain growth kinetics of sintered porous Ag[J]. Journal of Electronic Materials, 2015, 44(10): 3896-3903.
KIM D, CHEN C T, SUETAKE A, et al. Development of thermal shock-resistant of GaN/DBC die-attached module by using Ag sinter paste and thermal stress relaxation structure[J]. Microelectronics Reliability, 2018, 88/89/90: 779-787.
LEI T G, CALATA J N, LU G Q, et al. Low-temperature sintering of nanoscale silver paste for attaching large-area(>100 mm2) chips[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(1): 98-104.
ZHANG R W, MOON K S, LIN W, et al. Preparation of highly conductive polymer nanocomposites by low temperature sintering of silver nanoparticles[J]. Journal of Materials Chemistry, 2010, 20(10): 2018-2023.
SIOW K S, LIN Y. Identifying the development state of sintered silver (Ag) as a bonding material in the microelectronic packaging via a patent landscape study[J]. Journal of Electronic Packaging, 2016, 138(2): 020804.
WANG R, BOROYEVICH D, NING P, et al. A high temperature SiC three-phase AC-DC converter design for >100 ℃ ambient temperature[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 555-572.
陈刚, 王一哲, 梅云辉, 等. 烧结工艺对纳米银焊膏微观结构的影响[J]. 金属热处理, 2016, 41(5): 103-108.
CHEN Gang, WANG Yizhe, MEI Yunhui, et al. Influence of sintering process on microstructure of nanosilver paste[J]. Heat Treatment of Metals, 2016, 41(5): 103-108.
TAN Y S, LI X, CHEN X, et al. Low-pressure-assisted large-area (>800 mm2) sintered-silver bonding for high-power electronic packaging[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 8(2): 202-209.
ZHANG H Y, LI X, JIANG H N, et al. Large-area substrate bonding with single-printing silver paste sintering for power modules[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 11(1): 11-18.
NOH S, ZHANG H, YEOM J, et al. Large-area die-attachment by silver stress migration bonding for power device applications[J]. Microelectronics Reliability, 2018, 88/89/90: 701-706.
CHEN C T, NOH S, ZHANG H, et al. Bonding technology based on solid porous Ag for large area chips[J]. Scripta Materialia, 2018, 146: 123-127.
XIE Y J, WANG Y J, MEI Y H, et al. Rapid sintering of nano-Ag paste at low current to bond large area (>100 mm2) power chips for electronics packaging[J]. Journal of Materials Processing Technology, 2018, 255: 644-649.
0
Views
31
下载量
0
CSCD
2
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution