1.电子科技大学 电子薄膜与集成器件国家重点实验室,四川 成都 610054
扫 描 看 全 文
Jinping ZHANG, Xiang XIAO, Bo ZHANG. Structural Features and Recent Progress of Super Junction IGBT. [J]. Electric Drive for Locomotives (5):12-20(2021)
Jinping ZHANG, Xiang XIAO, Bo ZHANG. Structural Features and Recent Progress of Super Junction IGBT. [J]. Electric Drive for Locomotives (5):12-20(2021) DOI: 10.13890/j.issn.1000-128x.2021.05.002.
随着绝缘栅双极型晶体管(IGBT)技术的发展,目前主流的场截止型结构越来越接近其理论极限。超结被誉为“功率MOS的里程碑”,近年来也被引入IGBT以进一步提升器件性能。超结IGBT结合了场截止型IGBT和超结结构的优点,可在更短漂移区长度下实现高耐压和低损耗。然而,作为一种双极型器件,超结IGBT具有与超结MOSFET不同的工作原理。文章从超结原理出发,揭示了超结IGBT的结构特点和工作原理,并对超结IGBT的最新研究进展进行了梳理和概括。
With the development of insulated gate bipolar transistor (IGBT) technology, the field stop structure is getting closer to its theoretical limit. Super junction (SJ) is known as "milestone in power MOSFET" and has been introduced in IGBT to further enhance device performance in recent years. Combining the advantages of the field stop IGBT and SJ structure, super junction IGBT (SJ-IGBT) can withstand a high voltage and achieve a low loss with a short drift region length. However, as a bipolar device, the SJ-IGBT has different working principle from the super junction MOSFET. Based on the principle of super junction, the structural characteristics and mechanism were revealed as well as the latest research progress of the SJ-IGBTs was summarized.
超结绝缘栅双极型晶体管结构特点研究进展
super junction (SJ)insulated gate bipolar transistor (IGBT)structural characteristicsrecent progress
SHEN Z J, OMURA I. Power semiconductor devices for hybrid, electric, and fuel cell vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 778-789.
BERNET S. Recent developments of high power converters for industry and traction applications[J]. IEEE Transactions on Power Electronics, 2000, 15(6): 1102-1117.
IWAMURO N, LASKA T. IGBT history, state-of-the-art, and future prospects[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 741-752.
BALIGA B J. The future of power semiconductor device technology[J]. Proceedings of the IEEE, 2001, 89(6): 822-832.
LASKA T, MUNZER M, PFIRSCH F, et al. The field stop IGBT (FS IGBT): A new power device concept with a great improvement potential[C]//IEEE. 12th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Toulouse: IEEE, 2000: 355-358. DOI: 10.1109/ISPSD.2000.856842http://doi.org/10.1109/ISPSD.2000.856842.
MARESCA L, RICCIO M, BREGLIO G, et al. Temperature dependence of the on-state voltage drop in field-stop IGBTs[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Chicago: IEEE, 2018: 144-147. DOI: 10.1109/ISPSD.2018.8393623http://doi.org/10.1109/ISPSD.2018.8393623.
NAKAMURA K, OYA D, SAITO S, et al. Impact of an LPT(II) concept with thin wafer process technology for IGBT's vertical structure[C]//IEEE. 2009 21st International Symposium on Power Semiconductor Devices and IC's(ISPSD). Barcelona: IEEE, 2009: 295-298. DOI: 10.1109/ISPSD.2009.5158060http://doi.org/10.1109/ISPSD.2009.5158060.
RAHIMO M, KOPTA A, LINDER S. Novel enhanced-planar IGBT technology rated up to 6.5 kV for lower losses and higher SOA capability[C]//IEEE. 2006 IEEE International Symposium on Power Semiconductor Devices and IC's(ISPSD). Naples: IEEE, 2006: 1-4. DOI: 10.1109/ISPSD.2006.1666064http://doi.org/10.1109/ISPSD.2006.1666064.
TAKAHASHI T, TOMOMATSU Y, SATO K. CSTBT(III) as the next generation IGBT[C]//IEEE. 2008 20th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Orlando: IEEE, 2008: 72-75. DOI: 10.1109/ISPSD.2008.4538900http://doi.org/10.1109/ISPSD.2008.4538900.
MORI M, OYAMA K, KOHNO Y, et al. A trench-gate high-conductivity IGBT (HiGT) with short-circuit capability[J]. IEEE Transactions on Electron Devices, 2007, 54(8): 2011-2016.
WOLTER F, ROESNER W, COTOROGEA M, et al. Multi-dimensional trade-off considerations of the 750V micro pattern trench IGBT for electric drive train applications[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices and IC's (ISPSD). Hong Kong: IEEE, 2015: 105-108. DOI: 10.1109/ISPSD.2015.7123400http://doi.org/10.1109/ISPSD.2015.7123400.
JAEGER C, PHILIPPOU A, VEILEI A, et al. A new sub-micron trench cell concept in ultrathin wafer technology for next generation 1200 V IGBTs[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Sapporo: IEEE, 2017: 69-72. DOI: 10.23919/ISPSD.2017.7988895http://doi.org/10.23919/ISPSD.2017.7988895.
JAEGER C, PHILIPPOU A, VEILEI A, et al. A new sub-micron trench cell concept in ultrathin wafer technology for next generation 1200 V IGBTs[C]//IEEE. 2017 29th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Sapporo: IEEE, 2017: 69-72. DOI: 10.23919/ISPSD.2017.798889-5http://doi.org/10.23919/ISPSD.2017.798889-5.
LIEBENS M, JOURDAIN A, DE VOS J, et al. In-line metrology for characterization and control of extreme wafer thinning of bonded wafers[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(1): 54-61.
HAZDRA P, BRAND K, VOBECKY J. Effect of defects produced by MeV H and He ion implantation on characteristics of power silicon P-i-N diodes[C]//IEEE. 2000 International Conference on Ion Implantation Technology Proceedings. Alpbach: IEEE, 2000: 135-138. DOI: 10.1109/IIT.2000.924109http://doi.org/10.1109/IIT.2000.924109.
YAO Yao, LUO Haihui, XIAO Qiang, et al. A 750V recessed-emitter-trench IGBT with recessed-dummy-trench structure featuring low switching losses[C]//IEEE. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Chicago: IEEE, 2018: 112-115. DOI: 10.1109/ISPSD.2018.8393615http://doi.org/10.1109/ISPSD.2018.8393615.
OHI K, IKURA Y, YOSHIMOTO A, et al. Ultra low miller capacitance trench-gate IGBT with the split gate structure[C]//IEEE. 2015 IEEE 27th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Hong Kong: IEEE, 2015: 25-28. DOI: 10.1109/ISPSD.2015.7123380http://doi.org/10.1109/ISPSD.2015.7123380.
CHEN Rongxin, YI Bo, KONG Moufu, et al. Simulation study of trench IGBT with diode-clamped P-Well for high dI/dt and dV/dt controllability[C]//IEEE. 2019 IEEE 13th International Conference on ASIC(ASICON). Chongqing: IEEE, 2019: 1-4. DOI: 10.1109/ASICON47005.2019.8983572http://doi.org/10.1109/ASICON47005.2019.8983572.
CHEN Rongxin, YI Bo, CHEN Xingbi. Trench shielded planar gate IGBT (TSPG-IGBT) with self-biased pMOS realizing both low on-state voltage and low saturation current[J]. IEEE Journal of the Electron Devices Society, 2020, 8: 195-199.
LORENZ L, DEBOY G, KNAPP A, et al. COOLMOSTM: A new milestone in high voltage power MOS[C]//IEEE. 11th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Toronto: IEEE, 1999: 3-10. DOI: 10.1109/ISPSD.1999.764028http://doi.org/10.1109/ISPSD.1999.764028.
DEBOY G, MARZ N, STENGL J P, et al. A new generation of high voltage MOSFETs breaks the limit line of silicon[C]//IEEE. International Electron Devices Meeting 1998. San Francisco: IEEE, 1998: 683-685. DOI: 10.1109/IEDM.1998.746448http://doi.org/10.1109/IEDM.1998.746448.
BAUER F, NISTOR I, MIHAILA A, et al. Superjunction IGBTS: An evolutionary step of silicon power devices with high impact potential[C]//IEEE. CAS 2012(International Semiconductor Conference). Sinaia: IEEE, 2012, 1: 27-36. DOI: 10.1109/SMICND.2012.6400702http://doi.org/10.1109/SMICND.2012.6400702.
BAUER F, NISTOR I, MIHAINA A, et al. Superjunction IGBT filling the gap between SJ MOSFET and ultrafast IGBT[J]. IEEE Electron Device Letters, 2012, 33(9): 1288-1290.
张波, 罗小蓉, 李肇基. 功率半导体器件电场优化技术[M]. 成都: 电子科技大学出版社, 2016.
ZHANG Bo, LUO Xiaorong, LI Zhaoji. Power semiconductor device electric field optimization technology[M]. Chengdu: University of Electronic Science and Technology Press, 2016.
CHEN X B, SIN J K O. Optimization of the specific on resistance of the COOLMOSTM[J]. IEEE Transactions on Electron Devices, 2001, 48(2): 344-348.
ZHANG Wentong, ZHANG Bo, QIAO Ming, et al. The Ron, min of balanced symmetric vertical super junction based on R-Well model[J]. IEEE Transactions on Electron Devices, 2017, 64(1): 224-230.
DE SOUZA M M, SPULBER O, SANKARA NARAYANAN E M. A novel 'cool' insulated base transistor[C]//IEEE. 12th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Toulouse: IEEE, 2000: 313-316. DOI: 10.1109/ISPSD.2000.856833http://doi.org/10.1109/ISPSD.2000.856833.
WANG Zhigang, ZHANG Hao, KUO J B. Turn-off transient analysis of superjunction IGBT[J]. IEEE Transactions on Electron Devices, 2019, 66(2): 991-998.
SELGI L M, FRAGAPANE L. Experimental evaluation of a 600 V super-junction planar PT IGBT prototype - Comparison with planar PT and trench gate PT technologies[C]//IEEE. 2013 15th European Conference on Power Electronics and Applications(EPE). Lille: IEEE, 2013: 1-7. DOI: 10.1109/EPE.2013.6631745http://doi.org/10.1109/EPE.2013.6631745.
BAUER F D. The super junction bipolar transistor: a new silicon power device concept for ultra low loss switching applications at medium to high voltages[J]. Solid-State Electronics, 2004, 48(5): 705-714.
ANTONIOU M, UDREA F, BAUER F. Optimisation of superjunction bipolar transistor for ultra-fast switching applications[C]//IEEE. Proceedings of the 19th International Symposium on Power Semiconductor Devices and IC's(ISPSD). Jeju: IEEE, 2007: 101-104. DOI: 10.1109/ISPSD.2007.4294942http://doi.org/10.1109/ISPSD.2007.4294942.
ANTONIOU M, UDREA F, BAUER F. The superjunction insulated gate bipolar transistor optimization and modeling[J]. IEEE Transactions on Electron Devices, 2010, 57(3): 594-600.
ANTONIOU M, UDREA F, BAUER F, et al. The soft-punchthrough+superjunction insulated gate bipolar transistor: A high speed structure with enhanced electron injection[J]. IEEE Transactions on Electron Devices, 2011, 58(3): 769-775.
ANTONIOU M, UDREA F, BAUER F, et al. The semi-superjunction IGBT[J]. IEEE Electron Device Letters, 2010, 31(6): 591-593.
YE Jun, FU Daping, LUO Bo, et al. A novel TFS-IGBT with a super junction floating layer[J]. Journal of Semiconductors, 2010, 31(11): 114008.
ZHANG Jinping, LI Zehong, ZHANG Bo, et al. A novel high performance TFS SJ IGBT with a buried oxide layer[J]. Chinese Physics B, 2014, 23(8): 625-630.
OH K-H, KIM J, SEO H, et al. Experimental investigation of 650 V superjunction IGBTs[C]//IEEE. 2016 28th International Symposium on Power Semiconductor Devices and IC's (ISPSD). Prague: IEEE, 2016: 299-302. DOI: 10.1109/ISPSD.2016.7520837http://doi.org/10.1109/ISPSD.2016.7520837.
ZHANG Xukun, XING Junjun, PAN Jia, et al. Low switch loss and high current density superjunction IGBT based upon deep trench technology[C]//IEEE. 2019 8th International Symposium on Next Generation Electronics(ISNE). Zhengzhou: IEEE, 2019: 1-3. DOI: 10.1109/ISNE.2019.8896683http://doi.org/10.1109/ISNE.2019.8896683.
HUANG Mingmin, GAO Bo, YANG Zhimei, et al. A carrier-storage-enhanced superjunction IGBT with ultralow loss and on-state voltage[J]. IEEE Electron Device Letters, 2018, 39(2): 264-267.
HUANG Jun, HUANG Haimeng, CHEN Xingbi. Simulation study of a low on-state voltage superjunction IGBT with self-biased PMOS[J]. IEEE Transactions on Electron Devices, 2019, 66(7): 3242-3246.
WEI Jie, ZHANG Sen, LUO Xiaorong, et al. Low switching loss and EMI noise IGBT with self-adaptive hole-extracting path[J]. IEEE Transactions on Electron Devices, 2021, 68(5): 2572-2576.
WEI Jin, ZHANG Meng, CHEN K J. Superjunction IGBT with conductivity modulation actively controlled by two separate driving signals[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 4335-4339.
JIANG Huaping, ZHANG Bo, CHEN Wanjun, et al. A snapback suppressed reverse-conducting IGBT with a floating p-region in trench collector[J]. IEEE Electron Device Letters, 2012, 33(3): 417-419.
FINDLAY E M, UDREA F. Reverse-conducting insulated gate bipolar transistor: A review of current technologies[J]. IEEE Transactions on Electron Devices, 2019, 66(1): 219-231.
ANTONIOU M, UDREA F, BAUER F, et al. A new way to alleviate the RC IGBT snapback phenomenon: The super junction solution[C]//IEEE. 2010 22nd International Symposium on Power Semiconductor Devices &IC's(ISPSD). Hiroshima: IEEE, 2010: 153-156.
ANTONIOU M, UDREA F, LOPHITIS N, et al. On the investigation of the“Anode Side”superjunction IGBT design concept[J]. IEEE Electron Device Letters, 2017, 38(8): 1063-1066.
FINDLAY E M, UDREA F, ANTONIOU M. Investigation of the dual implant reverse-conducting superjunction insulated gate bipolar transistor[J]. IEEE Electron Device Letters, 2019, 40(6): 862-865.
张金平, 赵倩, 刘竞秀, 等. 一种具有混合导电模式的超结IGBT器件: CN201711020958.7[P]. 2018-03-06[2021-09-01]. https://wenku.baidu.com/view/84613652f321dd36a32d7375a417866fb94ac062?fr=xueshuhttps://wenku.baidu.com/view/84613652f321dd36a32d7375a417866fb94ac062?fr=xueshu.
ZHANG Jinping, ZHAO Qian, LIU Jingxiu, et al. A super-junction IGBT device with mixed conduction mode: CN201711020958.7[P]. 2018-03-06[2021-09-01]. https://wenku.baidu.com/view/84613652f321dd36a32d7375a417866fb94ac062?fr=xueshuhttps://wenku.baidu.com/view/84613652f321dd36a32d7375a417866fb94ac062?fr=xueshu.
ZHANG Jinping, WANG Kang, LI Zehong, et al. Trench isolated SJ RC IGBT filling the gap between SJ MOSFET and SJ IGBT[C]//China IGBT Technology Innovation and Industry Alliance. 2019 5th Academic Forum of China IGBT Technology Innovation and Industry Alliance. Zhuzhou: China IGBT Technology Innovation and Industry Alliance, 2019.
ZHOU Kun, HUANG Linhua, LUO Xiaorong, et al. Characterization and performance evaluation of the superjunction RB-IGBT in matrix converter[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3289-3301.
ZHANG Jinping, SHAN Yadong, XU Gaochao, et al. Bidirectional insulated gate bipolar transistor: US9741837 B2[P/OL]. 2017-08-22[2021-09-01]. https://www.freepatentsonline.com/9741837.pdfhttps://www.freepatentsonline.com/9741837.pdf.
ZHANG Jinping, ZHAO Qian, LUO Junyi, et al. High performance bidirectional IGBT with sandwich super junction structure[C]//IEEE. 2018 IEEE International Conference on Electron Devices and Solid State Circuits(EDSSC). Shenzhen: IEEE, 2018: 1-2. DOI: 10.1109/EDSSC.2018.8487176http://doi.org/10.1109/EDSSC.2018.8487176.
0
Views
35
下载量
0
CSCD
4
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution