浏览全部资源
扫码关注微信
1.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
2.西南交通大学 超高速真空管道磁浮交通研究中心,四川 成都 610031
3.西南交通大学 轨道交通国家实验室(筹),四川 成都 610031
Published:10 July 2024,
Received:28 November 2023,
Revised:23 May 2024,
移动端阅览
陈怡浩, 梁乐, 刘新, 等. 环形Halbach永磁轮新型充磁设计及磁力特性研究[J]. 机车电传动, 2024(4): 107-117.
CHEN Yihao, LIANG Le, LIU Xin, et al. Novel design of magnetization and study of magnetic force characteristics of annular Halbach permanent magnet electrodynamic wheel[J]. Electric drive for locomotives,2024(4): 107-117.
陈怡浩, 梁乐, 刘新, 等. 环形Halbach永磁轮新型充磁设计及磁力特性研究[J]. 机车电传动, 2024(4): 107-117. DOI:10.13890/j.issn.1000-128X.2024.04.107.
CHEN Yihao, LIANG Le, LIU Xin, et al. Novel design of magnetization and study of magnetic force characteristics of annular Halbach permanent magnet electrodynamic wheel[J]. Electric drive for locomotives,2024(4): 107-117. DOI:10.13890/j.issn.1000-128X.2024.04.107.
径向永磁轮具有“悬浮‒推进”一体化的独特优势,但是由于永磁轮存在非气隙侧漏磁现象,使得永磁轮利用率较低,需要进一步提高悬浮承载能力。鉴于此,文章提出了一种新型永磁轮充磁方案,能在相同永磁轮质量的条件下,有效提高悬浮驱动能力。文章提出在相邻永磁体之间插入斜向磁化的永磁体和径向充磁永磁体等分的永磁轮结构,阐述分析其基本原理,并搭建了三维有限元模型,以浮重比和驱重比为性能指标,求解各结构的最优尺寸。仿真结果表明,对于插入斜向磁化永磁体的永磁轮结构,其悬浮力提升了14.80%,驱动力提升了14.98%;对于径向充磁永磁体等分的永磁轮结构,其悬浮力提升了9.2%,驱动力提升了7.6%。研究结果表明,在永磁体用量相同的情况下,文章提出的充磁方法能够有效改善系统的悬浮力和驱动力特性,节约了成本,并提升了系统的运行效率,为后续永磁轮结构的优化和磁悬浮车辆的设计提供参考。
Radial permanent magnet electrodynamic wheels (PMEDW) offer a distinctive advantage through their integration of levitation and propulsion. However
they are prone to non-air-gap side magnetic flux leakage
resulting in a reduced utilization rate. To address this limitation and improve their load-carrying capacity through levitation
this paper proposes a novel magnetization scheme for PMEDWs
with the objective of enhancing their levitation drive capability without altering their overall mass. The proposed design employs a PMEDW structure featuring obliquely magnetized permanent magnets and radially magnetized permanent magnets
which are equally inserted between adjacent permanent magnets. The study investigated the basic principle of the permanent magnet wheel structure modified by introducing new magnetization methods. A three-dimensional finite element model was created to determine the optimal size of each structure through a solving process that incorporates two performance indexes: the levitation-to-weight and levitation-to-drag ratios. The simulation results revealed that the levitation force of the permanent magnet wheel structure increased by 14.8% with the introduction of obliquely magnetized permanent magnets
while the propulsion force showed a 14.98% enhancement. The permanent magnet wheel structure with equally inserted radially magnetized permanent magnets demonstrated a 9.2% increase in levitation force and a 7.6% improvement in propulsion force
respectively. The study findings indicate the proposed magnetization methods effectively elevate both the levitation and propulsion forces of the system
while maintaining the consumption of permanent magnets unchanged. The novel design not only reduces cost but also enhances the operating efficiency of the system
providing insights for future optimizations of the PMEDW structure and the design of magnetically levitated vehicles.
永磁轮Halbach阵列充磁结构永磁轮利用率
permanent magnet electrodynamic wheel (PMEDW)Halbach arraymagnetization structurepermanent magnet wheel utilization
熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198.
XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of traffic and transportation engineering, 2021, 21(1): 177-198.
邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474.
DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of southwest jiaotong university, 2022, 57(3): 455-474.
POST R F, RYUTOV D D. The inductrack: a simpler approach to magnetic levitation[J]. IEEE transactions on applied superconductivity, 2000, 10(1): 901-904.
张瑞华, 刘育红, 徐善纲. 美国Magplane磁悬浮列车方案[J]. 变流技术与电力牵引, 2005(5): 40-43.
ZHANG Ruihua, LIU Yuhong, XU Shangang. American magplane schemes[J]. Converter technology & electric traction, 2005(5): 40-43.
武瑛严, 陆光, 徐善纲. Inductrack磁浮技术及其在磁浮列车系统中的应用[J]. 电气应用, 2006(1): 1-3.
WU Yingyan, LU Guang, XU Shangang. Inductrack maglev technology and its application in maglev train systems[J]. Electrotechnical applications, 2006(1): 1-3.
袁成, 韩亚鹏, 马卫华, 等. 基于Halbach阵列的永磁电动悬浮仿真与性能影响因素分析[J]. 磁性材料及器件, 2021, 52(3): 8-13.
YUAN Cheng, HAN Yapeng, MA Weihua, et al. Simulation and performance of permanent magnet electric suspension based on Halbach array[J]. Journal of magnetic materials and devices, 2021, 52(3): 8-13.
LIU Mingxin, TAN Yiqiu, YANG Qing, et al. Three-dimensional analytical calculation and optimization of plate-type permanent magnet electrodynamic suspension system[J]. Applied sciences, 2022, 12(19): 9926.
BIRD J, LIPO T A. Characteristics of an electrodynamic wheel using a 2-D steady-state model[J]. IEEE transactions on magnetics, 2007, 43(8): 3395-3405.
FUJII N, OGAWA K, MATSUMOTO T. Revolving magnet wheels with permanent magnets[J]. Electrical engineering in Japan, 1996, 116(1): 106-118.
PAUL S, BIRD J Z. A 3-D analytic eddy current model for a finite width conductive plate[J]. The international journal for computation and mathematics in electrical and electro-nic engineering, 2014, 33(1/2): 688-706.
PAUL S, BIRD J Z. Analytic 3-D eddy current model of a finite width conductive plate including edge-effects[J]. International journal of applied electromagnetics and mechanics, 2014, 45(1/4): 535-542.
DUAN Jiaheng, ZHANG Wenlong, XIAO Song, et al. Investigation of the characteristics of the electrodynamic wheel suspension device with two-DOF motion[J]. IEEE transactions on plasma science, 2020, 48(6): 2274-2279.
YUAN Yuan, DENG Zigang, ZHANG Shuai, et al. Working principle and primary electromagnetic characteristics of a permanent magnet electrodynamic wheel for maglev car application[J]. IEEE transactions on applied superconductivity, 2021, 31(8): 1-5.
ZHANG Ze, DENG Zigang, ZHANG Shuai, et al. Design and operating mode study of a new concept maglev car employing permanent magnet electrodynamic suspension technology[J]. Sustainability, 2021, 13(11): 5827.
SHI Hongfu, DENG Zigang, ZHANG Baojian, et al. Thermal-force coupling analysis of permanent magnet electrodynamic wheel system for maglev car[J]. IEEE transactions on magnetics, 2023, 59(1): 1-9.
LIN Peng, DENG Zigang, KE Zhihao, et al. Dynamic characteristics and working modes of permanent magnet electrodynamic suspension vehicle system based on six wheels of annular Halbach structure[J]. Technologies, 2023, 11(1): 16.
SHI Hongfu, KE Zhihao, ZHENG Jun, et al. An effective optimization method and implementation of permanent magnet electrodynamic wheel for maglev car[J]. IEEE transactions on vehicular technology, 2023, 72(7): 8369-8381.
ZHANG Hongye, KAILS K, MACHURA P, et al. Conceptual design of electrodynamic wheels based on HTS Halbach array magnets[J]. IEEE transactions on applied superconductivity, 2021, 31(5): 1-6.
BIRD J, LIPO T A. A 3-D magnetic charge finite-element model of an electrodynamic wheel[J]. IEEE transactions on magnetics, 2008, 44(2): 253-265.
QIN Wei, BIRD J Z. Electrodynamic wheel magnetic rolling resistance[J]. IEEE transactions on magnetics, 2017, 53(8): 1-7.
HASANZADEH S, REZAEI H, QIYASSI E. Analysis and optimization of permanent magnet dimensions in electrodynamic suspension systems[J]. Journal of electrical engineering & technology, 2018, 13(1): 307-314.
DENG Zigang, ZHANG Weifeng, CHEN Yang, et al. Optimization study of the Halbach permanent magnetic guideway for high temperature superconducting magnetic levitation[J]. Superconductor science and technology, 2020, 33(3): 034009.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution