浏览全部资源
扫码关注微信
1.中国铁路广州局集团有限公司 机务部,广东 广州 510088
2.国网湖北省电力有限公司 武汉供电公司,湖北 武汉 430050
3.湖南中车时代通信信号有限公司,湖南 长沙 410100
Published:10 July 2024,
Received:25 July 2023,
Revised:20 June 2024,
移动端阅览
罗茵蓓, 葛婷, 孙泽勇. 基于电流信号多频带特征的列车弓网燃弧检测方法[J]. 机车电传动, 2024(4): 181-189.
LUO Yinbei, GE Ting, SUN Zeyong. Detection method on pantograph-catenary arcing of electric locomotives based on multi-frequency-band characteristics of current signals[J]. Electric drive for locomotives,2024(4): 181-189.
罗茵蓓, 葛婷, 孙泽勇. 基于电流信号多频带特征的列车弓网燃弧检测方法[J]. 机车电传动, 2024(4): 181-189. DOI:10.13890/j.issn.1000-128X.2024.04.022.
LUO Yinbei, GE Ting, SUN Zeyong. Detection method on pantograph-catenary arcing of electric locomotives based on multi-frequency-band characteristics of current signals[J]. Electric drive for locomotives,2024(4): 181-189. DOI:10.13890/j.issn.1000-128X.2024.04.022.
列车弓网电弧检测是铁路安全运维的重要方面。现有检测方案多以光学仪器拍摄弓网图像,并分析所拍图像是否含有电弧的光谱,以此判断列车弓网是否发生燃弧,然而,该方法受限于列车外部环境的能见度,具有不易维护的特点。因此文章提出了一种基于电流信号多频带特征的识别方法。首先,从电弧的时域和频域物理特征出发,通过理论推导、仿真和现场实测波形,论证弓网电弧的特征分量包含了瞬间电离导致的极低频分量、LC振荡引起的谐波分量和高频分量;然后以此为依据,设计测量方案和数据预处理算法,结合历史数据形成特征集,并建立以特征向量为输入、以检测结果为输出的随机森林模型;最后将3C设备提供的燃弧标签和特征集代入训练,获得能够实时检测的分类器。通过现场随车试验论证其可行性,其中检测准确率达100%,回报率约98. 9%。文章提及的方法具有一定扩展能力,可根据用户提供不同事件标签进行训练,扩展模式识别的用途。
Detecting pantograph-catenary arcing on trains is crucial for ensuring safety in railway operation and maintenance. Most existing detection methods rely on optical instruments to capture pantograph-catenary images
followed by the analysis of these images to identify arc spectra as evidence of arcing occurrences. However
these methods are limited by inadequate visibility in the external environments of trains
and maintenance access can be challenging. To address these issues
this paper proposed a detection method based on multi-frequency-band characteristics of current signals. First
based on the time-domain and frequency-domain characteristics of arcs
leveraging theoretically derived
simulated and measured waveforms
the following characteristic components of pantograph-catenary arcs were demonstrated: extremely low-frequency components caused by instantaneous ionization
harmonic components resulting from LC oscillation
and high-frequency components. These characteristic components were then utilized to devise a measurement scheme and data preprocessing algorithm
and historical data were incorporated
leading to the establishment of feature sets. Additionally
a random forest model was established
with feature vectors as inputs and detection results as outputs. The arcing labels and feature sets provided by 3C equipment were incorporated for training
to develop a classifier enabling real-time arcing detection. Its efficacy was demonstrated through on-board experiments
showcasing a detection precision up to 100% and a recall approximating 98.9%. In addition
the proposed method supports certain extensions for more application scenarios
after training using different event labels provided by users.
电力机车电弧暂态特征传感器应用傅里叶变换随机森林
electrical locomotivearc transient characteristicstransducer applicationFourier transformrandom forest
胡秦然, 丁昊晖, 陈心宜, 等. 美国加州2020年轮流停电事故分析及其对中国电网的启示[J]. 电力系统自动化, 2020, 44(24): 11-18.
HU Qinran, DING Haohui, CHEN Xinyi, et al. Analysis on rotating power outage in California, USA in 2020 and its enlightenment to power grid of China[J]. Automation of electric power systems, 2020, 44(24): 11-18.
冯庆胜, 牛学慧. 基于SSD的受电弓燃弧在线检测方法[J]. 自动化与仪表, 2021, 36(3): 45-49.
FENG Qingsheng, NIU Xuehui. On-line detection method of pantograph arc based on SSD[J]. Automation & instrumentation, 2021, 36(3): 45-49.
吴琛, 伍川辉, 杨恒, 等. 基于LabVIEW图像处理的弓网拉弧在线监测研究[J]. 铁道标准设计, 2018, 62(9): 145-148.
WU Chen, WU Chuanhui, YANG Heng, et al. Pantograph-catenary arc online monitoring research based on image processing technology of LabVIEW[J]. Railway standard design, 2018, 62(9): 145-148.
CHANG Luonan, PAN Xiao, FU Zhenzhou, et al. Robust online dynamic detection method for PAC operational status of high-speed trains based on key point positioning[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 1-14.
YANG Lijian, WANG Zhujun, GAO Songwei. Pipeline magnetic flux leakage image detection algorithm based on multiscale SSD network[J]. IEEE transactions on industrial informatics, 2020, 16(1): 501-509.
孙传铭, 鲁超, 母婷佑, 等. 横风作用下弓网电弧动态特性的研究[J]. 机车电传动, 2022(4): 151-156.
SUN Chuanming, LU Chao, MU Tingyou, et al. Research on dynamic characteristics of pantograph arc under cross wind[J]. Electric drive for locomotives, 2022(4): 151-156.
雷栋, 张婷婷, 段绪伟, 等. 列车运行速度对弓网电弧电气特性的影响研究[J]. 铁道学报, 2019, 41(7): 50-56.
LEI Dong, ZHANG Tingting, DUAN Xuwei, et al. Study on influence of train speed on electrical characteristics of pantograph-catenary arc[J]. Journal of the China railway society, 2019, 41(7): 50-56.
于东明, 孙洪亮. 基于弓网电弧动态模型的高速列车弓网电弧产生机理[J]. 城市轨道交通研究, 2020, 23(4): 54-57.
YU Dongming, SUN Hongliang. Mechanism of arcing in high speed train based on pantograph arc dynamic model[J]. Urban mass transit, 2020, 23(4): 54-57.
王其平. 电器电弧理论[M]. 北京: 机械工业出版社, 1991.
WANG Qiping. Theory of electrical equipment arc[M].
Beijing: China Machine Press, 1991.
刘耀银, 陈旭坤, 万玉苏, 等. 高速列车弓网电弧模型及其电气特性仿真研究[J]. 高压电器, 2017, 53(11): 39-45.
LIU Yaoyin, CHEN Xukun, WAN Yusu, et al. Pantograph-catenary arc model of high speed train and its electrical characteristics simulation[J]. High voltage apparatus, 2017, 53(11): 39-45.
LI Bin, LUO Chenyu, WANG Zhiyong. Application of GWO-SVM algorithm in arc detection of pantograph[J]. IEEE access, 2020, 8: 173865-173873.
仇炜, 崔江静, 黄顺涛, 等. 高压电缆接头放电电弧特性的有限元仿真[J]. 电气应用, 2019, 38(12): 62-68.
QIU Wei, CUI Jiangjing, HUANG Shuntao, et al. Finite element simulation of discharge arc characteristics of high voltage cable joints based on magneto-hydrodynamics[J]. Electrotechnical application, 2019, 38(12): 62-68.
XU Yanchun, DU Yufei, LI Zhenxing, et al. Inter-harmonics analysis and parameter estimation based on H2R6 window and constructing low-interference zone[J]. IET communications, 2020, 14(1): 28-36.
ZHOU Lei, CHEN Qing, LI Hongbin, et al. A non-contact micro-ampere DC current digital sensor based on the open-loop structure[J]. IEEE sensors journal, 2021, 21(5): 5923-5931.
刘柱揆, 丁心志, 陈福明, 等. 开关柜电弧故障及其测量方法研究[J]. 电网技术, 2017, 41(4): 1345-1349.
LIU Zhukui, DING Xinzhi, CHEN Fuming, et al. Research on switchgear arc discharge fault and its measurement[J]. Power system technology, 2017, 41(4): 1345-1349.
马征, 张国钢, 柯春俊. 一种基于高频电流频谱分析的故障电弧检测方法[J]. 低压电器, 2010(9): 10-12.
MA Zheng, ZHANG Guogang, KE Chunjun. A method of fault arc detection based on spectral analysis of high-frequency current[J]. Low voltage apparatus, 2010(9): 10-12.
0
Views
1
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution