浏览全部资源
扫码关注微信
中铁建电气化局集团南方工程有限公司,湖北 武汉 430000
Published:10 July 2024,
Received:19 January 2024,
Revised:29 April 2024,
移动端阅览
唐阳. 高速铁路接触网导线动态抬升量研究[J]. 机车电传动, 2024(4): 171-180.
TANG Yang. Research on dynamic uplift of contact wires in high-speed railway[J]. Electric drive for locomotives,2024(4): 171-180.
唐阳. 高速铁路接触网导线动态抬升量研究[J]. 机车电传动, 2024(4): 171-180. DOI:10.13890/j.issn.1000-128X.2024.04.021.
TANG Yang. Research on dynamic uplift of contact wires in high-speed railway[J]. Electric drive for locomotives,2024(4): 171-180. DOI:10.13890/j.issn.1000-128X.2024.04.021.
为了通过高速铁路线路整体接触导线抬升量数据研究弓网系统动态性能,文章建立了4种典型高铁线路的接触网模型和3种高速受电弓的三自由度归算参数模型,并利用罚函数法模拟弓网关系,建立弓网耦合模型,仿真计算接触线定位器抬升量在不同运行速度、不同运行方向下的变化。随后,文章提出一种基于随机森林算法的定位点智能识别分类方法,将接触线拉出值拐点作为定位点,结合现有的接触网几何参数检测数据,采用随机森林算法,将投票结果作为最终定位点判断标准,建立分类模型,优化定位点数据,并对接触线抬升量动态静态实测数据进行预处理、定位点优化、数据空间同步后,得到连续的接触线抬升量。研究结果表明,在速度170~350 km/h内4种典型线路定位器最大抬升量随列车运行速度的提升而增大;在300 km/h开口运行条件下,SSS400+受电弓的定位器动态最大抬升量小于法维莱CX-018与DSA380受电弓,最大抬升量在61.17~81.44 mm;在接触网参数确定的前提下,受电弓闭口方向运行时接触线平均抬升量要高于开口方向运行。
This paper aims to study the dynamic behaviors of the pantograph-catenary system for high-speed railway lines
focusing on the overall uplift data of contact wires. To achieve this
models of overhead contact systems (OCS) were established for four typical high-speed railway systems
along with three-degree-of-freedom models with reduction parameters for three types of high-speed pantographs. Moreover
the penalty function method was introduced to simulate pantograph-catenary interactions
leading to the establishment of a pantograph-catenary coupling model that was then utilized to simulate uplift changes of contact wire steady arms under different operating speeds and directions. Subsequently
an intelligent locating point recognition and classification method was proposed
based on the random forest algorithm. By using the inflection points of contact wire staggers as locating points
and leveraging existing detection data for the geometric parameters of the overhead contact systems
the voting results from the random forest algorithm were considered standards for determining the final locating points. Furthermore
a classification model was established to optimize the locating point data. After preprocessing the data obtained from the dynamic and static measurements of contact wire uplift
optimizing the locating points
and performing data spatial synchronization
continuous contact wire uplifts were ultimately generated. The research results indicate that the maximum uplift of the four typical steady arms increases with the increase in train operating speeds within the range of 170 km/h to 350 km/h. Under the conditions of 300 km/h and pantograph opening operation
the dynamic maximum uplift of steady arms for SSS400+ pantographs is smaller than that for the Faiveley CX-018 and DSA380 pantographs. The maximum uplifts ranged from 61.17 mm to 81.44 mm. Under specific OCS parameters
the average uplift of the contact wires during operation in the pantograph closing direction is higher than that during operation in the opening direction.
高速铁路接触网导线抬升数据采集弓网耦合高速列车有限元法
high-speed railwayoverhead contact system (OCS)contact wire upliftdata collectionpantograph-catenary couplinghigh-speed trainfinite element method
龙鹏. 基于视频图像处理的接触线动态抬升量测量方法研究[D]. 武汉: 武汉理工大学, 2022.
LONG Peng. Research on measurement method of dynamic lifting of contact line based on video image processing[D]. Wuhan: Wuhan University of Technology, 2022.
KUSUMI S, NEZU K, NAGASAWA H. Overhead contact line inspection system by rail-and-road car[J]. Quarterly report of RTRI, 2000, 41(4): 169-172.
凌朝清. 弓网动态参数图像检测系统设计[D]. 天津: 天津大学, 2014.
LING Chaoqing. Image detection system design for dyna-mic parameters of pantograph-catenary system[D]. Tianjin: Tianjin University, 2014.
BOFFI P, CATTANEO G, AMORIELLO L, et al. Optical fiber sensors to measure collector performance in the pantograph-catenary interaction[J]. IEEE sensors journal, 2009, 9(6): 635-640.
CERNIGLIA D, GARCIA G, KALAY S, et al. Application of laser induced ultrasound for rail inspection[EB/OL]. (2015-07-13) [2024-04-18]. https://www.researchgate.net/publication/267771450_Application_of_Laser_Induced_Ultrasound_for_Rail_Inspectionhttps://www.researchgate.net/publication/267771450_Application_of_Laser_Induced_Ultrasound_for_Rail_Inspection.
KARADUMAN G, KARAKOSE M, AKIN E. Deep learning based arc detection in pantograph-catenary systems[C]//IEEE. 2017 10th International Conference on Electrical and Electronics Engineering. Bursa: IEEE, 2017: 904-908.
李宗荫, 郭迎庆. 基于单片机的接触网参数检测控制系统设计[J]. 电子测量技术, 2020, 43(8): 17-21.
LI Zongyin, GUO Yingqing. Design of control system for catenary parameters detection based on single chip microcomputer[J]. Electronic measurement technology, 2020, 43(8): 17-21.
孔龙飞, 韩通新, 刘寅秋. 基于二维图像直线标定的接触网几何参数测量方法[J]. 电气化铁道, 2019, 30(增刊1): 42-46.
KONG Longfei, HAN Tongxin, LIU Yinqiu. Measurement methods of OCS geometric parameters by linear staking based on two-dimensional images[J]. Electric railway, 2019, 30(Suppl 1): 42-46.
胡碟, 金炜东, 唐鹏. 基于双尺度特征的铁路接触网吊弦检测[J]. 电工技术, 2020(15): 64-68.
HU Die, JIN Weidong, TANG Peng. Detection of railway dropper based on double scale features[J]. Electric engineering, 2020(15): 64-68.
闵锋, 郎达, 吴涛. 基于语义分割的接触网开口销状态检测[J]. 华中科技大学学报(自然科学版), 2020, 48(1): 77-81.
MIN Feng, LANG Da, WU Tao. The state detection of split pin in overhead contact system based on semantic segmentation[J]. Journal of huazhong university of science and technology(nature science edition), 2020, 48(1): 77-81.
翟婉明. 车辆-轨道垂向系统的统一模型及其耦合动力学原理[J]. 铁道学报, 1992(3): 10-21.
ZHAI Wanming. Unified model of vehicle-track vertical system and its coupling dynamics principle[J]. Journal of the China railway society, 1992(3): 10-21.
蔡成标, 翟婉明. 高速铁路受电弓-接触网系统动态性能仿真研究[J]. 铁道学报, 1997(5): 39-44.
CAI Chengbiao, ZHAI Wanming. Study on simulation of dynamic performance of pantograph-catenary system at high speed railway[J]. Journal of the China railway society, 1997, 19(5): 39-44.
张卫华, 梅桂明, 陈良麒. 接触线弛度及表面不平顺对接触受流的影响分析[J]. 铁道学报, 2000, 22(6): 50-54.
ZHANG Weihua, MEI Guiming, CHEN Liangqi. Analysis of the influence of catenary's sag and irregularity upon the quality of current-feeding[J]. Journal of the China railway society, 2000, 22(6): 50-54.
梅桂明, 张卫华. 受电弓/接触网系统动力学模型及特性[J]. 交通运输工程学报, 2002, 2(1): 20-25.
MEI Guiming, ZHANG Weihua. Dynamics model and behavior of pantograph/catenary system[J]. Journal of traffic and transportation engineering, 2002, 2(1): 20-25.
刘怡, 张卫华, 梅桂明. 受电弓/接触网垂向耦合运动中接触网动应力研究[J]. 铁道学报, 2003, 25(4): 23-26.
LIU Yi, ZHANG Weihua, MEI Guiming. Study of dynamic stress of the catenary in the pantograph/catenary vertical coupling movement[J]. Journal of the China railway society, 2003, 25(4): 23-26.
周宁, 张卫华. 基于直接积分法的弓网耦合系统动态性能仿真分析[J]. 中国铁道科学, 2008, 29(6): 71-76.
ZHOU Ning, ZHANG Weihua. Dynamical performance simulation of the pantograph-catenary coupled system based on direct integration method[J]. China railway science, 2008, 29(6): 71-76.
宋洋, 刘志刚, 鲁小兵, 等. 计及接触网空气动力的高速弓网动态受流特性研究[J]. 铁道学报, 2016, 38(3): 48-58.
SONG Yang, LIU Zhigang, LU Xiaobing, et al. Study on characteristics of dynamic current collection of high-speed pantograph-catenary considering aerodynamics of catenary[J]. Journal of the China railway society, 2016, 38(3): 48-58.
杨艺, 周宁, 李瑞平, 等. 基于有限元法的弓网过渡段处动态性能仿真分析[J]. 振动与冲击, 2016, 35(18): 71-75.
YANG Yi, ZHOU Ning, LI Ruiping, et al. Dynamic performance analysis of different sections of overhead catenary based on finite element model[J]. Journal of vibration and shock, 2016, 35(18): 71-75.
田珂, 高仕斌, 于金鑫. 基于ADAMS的地铁弓网耦合仿真分析[J]. 电气化铁道, 2018, 29(5): 51-54.
TIAN Ke, GAO Shibin, YU Jinxin. Analysis and simulation of ADAMS based subway pantograph-catenary coupling[J]. Electric railway, 2018, 29(5): 51-54.
吴燕, 吴俊勇, 郑积浩. 基于有限元和空气动力学模型的高速受电弓动态性能仿真[J]. 西南交通大学学报, 2009, 44(6): 855-859.
WU Yan, WU Junyong, ZHENG Jihao. Simulation of high-speed pantograph dynamic performance based on finite element model and aerodynamic pantograph model[J]. Journal of southwest jiaotong university, 2009, 44(6): 855-859.
赵飞, 刘志刚, 张晓晓. 基于有限元的高速弓网系统动态性能仿真研究[J]. 铁道学报, 2012, 34(8): 33-38.
ZHAO Fei, LIU Zhigang, ZHANG Xiaoxiao. Simulation of high-speed pantograph-catenary system dynamic performance based on finite element model[J]. Journal of the China railway society, 2012, 34(8): 33-38.
国家铁路局. 高速铁路设计规范: TB 10621—2014[S]. 北京: 中国铁道出版社, 2014.
National railway administration of the people’s republic of China. Code for design of high speed railway: TB 10621—2014[S]. Beijing: China Railway Publishing House, 2014.
国家铁路局. 城际铁路设计规范: TB 10623—2014[S]. 北京: 中国铁道出版社, 2014.
National railway administration of the people’s republic of China. Code for design of intercity railway: TB 10623—2014[S]. Beijing: China Railway Publishing House, 2014.
刘志刚, 宋洋.典型高铁线路弓网关系仿真分析[Z]. 成都: 西南交通大学, 2021.
LIU Zhigang, SONG Yang. Simulation analysis of pantograph catenary relationship on typical high-speed railway lines[Z]. Chengdu: Southwest Jiaotong University, 2021.
BRUNI S, AMBROSIO J, CARNICERO A, et al. The results of the pantograph-catenary interaction benchmark[J]. Vehicle system dynamics, 2015, 53(3): 412-435.
宋洋. 环境风下高速铁路弓网动态受流特性研究[D]. 成都: 西南交通大学, 2017.
SONG Yang. Study on high-speed railway pantograph-catenary current collection quality under environmental wind load[D]. Chengdu: Southwest Jiaotong University, 2017.
SHAFER J C, AGRAWAL R, MEHTA M. SPRINT: a scalable parallel classifier for data mining[C]//ACM. Proceedings of the 22th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers Inc., 1996: 544-555.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution