浏览全部资源
扫码关注微信
中车株洲电力机车研究所有限公司,湖南 株洲 412001
Published:10 July 2024,
Received:25 February 2024,
Revised:01 July 2024,
移动端阅览
刘海涛, 刘永江, 李华, 等. 轨道交通变流器共性技术研究综述[J]. 机车电传动, 2024(4): 1-16.
LIU Haitao, LIU Yongjiang, LI Hua, et al. Review on key generic technologies for railway converters[J]. Electric drive for locomotives,2024(4): 1-16.
刘海涛, 刘永江, 李华, 等. 轨道交通变流器共性技术研究综述[J]. 机车电传动, 2024(4): 1-16. DOI:10.13890/j.issn.1000-128X.2024.04.001.
LIU Haitao, LIU Yongjiang, LI Hua, et al. Review on key generic technologies for railway converters[J]. Electric drive for locomotives,2024(4): 1-16. DOI:10.13890/j.issn.1000-128X.2024.04.001.
随着技术的不断进步,市场对变流器的品质要求日益提升,推动着变流器向轻量化、低噪声、高可靠性、美观的方向发展。文章重点介绍了轨道交通变流器设计中的重要共性技术,覆盖了功率器件应用、轻量化、减振降噪、电磁兼容、热管理、工业设计等重要领域,概述了这些重要共性技术的国内外发展现状,分析总结了各项技术当前所面临的难题与挑战,并以实际应用为例,对这些技术在提升产品市场竞争力所起到的重要作用进行了深入阐述,为设计出“更轻、更静、更可靠、更美观”的变流器提供参考与技术指引。
With continuous advancements in technology
customer requirements for converters
particularly quality indicators
are steadily increasing
driving the evolution of converters towards lighter weight
lower noise
higher reliability
and improved aesthetics. This paper delves into the key generic technologies in the design of converters for rail traffic
covering critical areas such as the application of power devices
lightweight design
vibration and noise reduction
electromagnetic compatibility
thermal management
and industrial design. It provides an overview of the current development status of these technologies both domestically and internationally
summarizes the challenges and difficulties encountered in their further development
and discusses in detail the core role these technologies play in enhancing product market competitiveness based on practical application examples. The findings provide comprehensive references and technical guidance for designing converters that are lighter
quieter
more reliable
and more aesthetically pleasing.
变流器共性技术振动噪声电磁兼容热管理工业设计轻量化
convertergeneric technologyvibration and noiseelectromagnetic compatibilitythermal managementindustrial designlightweight
刘海涛, 刘兴平, 康力璇, 等. 牵引变流器IGBT失效特性与寿命预测方法研究[J/OL]. 电机与控制学报: 1-9. (2024-05-17) [2024-06-05]. http://kns.cnki.net/kcms/detail/23.1408.tm.20240516.1541.002.htmlhttp://kns.cnki.net/kcms/detail/23.1408.tm.20240516.1541.002.html.
LIU Haitao, LIU Xingping, KANG Lixuan, et al. Study on failure characteristics and life prediction method of IGBT in traction converter[J/OL]. Electric machines and control: 1-9. (2024-05-17) [2024-06-05]. http://kns.cnki.net/kcms/detail/23.1408.tm.20240516.1541.002.htmlhttp://kns.cnki.net/kcms/detail/23.1408.tm.20240516.1541.002.html.
周磊, 吴书舟, 唐邕浦. 地铁列车牵引变流器结构设计和优化[J]. 装备维修技术, 2024(2): 77-81.
ZHOU Lei, WU Shuzhou, TANG Yongpu. Structure design and optimization of metro train traction converter[J]. Equipment technology, 2024(2): 77-81.
丁杰. HXD1型电力机车牵引变流器风机振动测试分析[J]. 机电工程技术, 2023, 52(2): 59-62.
DING Jie. Vibration test and analysis of fan of traction converter for HXD1 electric locomotive[J]. Mechanical & electrical engineering technology, 2023, 52(2): 59-62.
范荣辉, 付建辉, 康子剑, 等. 高原双源动力集中动车组内燃车牵引变流器关键技术分析与验证[J]. 机车电传动, 2024(2): 101-107.
FAN Ronghui, FU Jianhui, KANG Zijian, et al. Analysis and verification of key technologies for traction converter of plateau dual-source power centralized diesel multiple units[J]. Electric drive for locomotives, 2024(2): 101-107.
支永健, 朱柄全, 袁科亮, 等. 轨道交通牵引系统电磁兼容技术研究及应用[J]. 安全与电磁兼容, 2024(3): 25-38.
ZHI Yongjian, ZHU Bingquan, YUAN Keliang, et al. Research and application of electromagnetic compatibility technology in railway traction system[J]. Safety & EMC, 2024(3): 25-38.
冯高辉, 袁立强, 赵争鸣, 等. 基于开关瞬态过程分析的母排杂散电感提取方法研究[J]. 中国电机工程学报, 2014, 34(36): 6442-6449.
FENG Gaohui, YUAN Liqiang, ZHAO Zhengming, et al. A novel stray inductance extraction method for bus bars based on turn-on/off transient process[J]. Proceedings of the CSEE, 2014, 34(36): 6442-6449.
刘杰, 谢舜蒙, 漆宇. 一种IGBT简化结温曲线计算方法[J]. 机车电传动, 2024(2): 165-170.
LIU Jie, XIE Shunmeng, QI Yu. A simplified junction temperature curve calculation method for IGBT[J]. Electric drive for locomotives, 2024(2): 165-170.
马龙昌, 张东辉, 杨光, 等. IGBT并联应用技术研究[J]. 大功率变流技术, 2015(2): 35-39.
MA Longchang, ZHANG Donghui, YANG Guang, et al. Research on the IGBT paralleling application[J]. High power converter technology, 2015(2): 35-39.
孙康康, 陈燕平, 忻兰苑, 等. 3 300 V全SiC MOSFET功率器件开关特性研究[J]. 机车电传动, 2020(1): 34-37.
SUN Kangkang, CHEN Yanping, XIN Lanyuan, et al. Research on switching characteristics of 3 300 V full SiC MOSFET power module[J]. Electric drive for locomotives, 2020(1): 34-37.
丁荣军, 窦泽春, 罗海辉. 高压大容量功率半导体器件技术及其应用[J]. 机车电传动, 2023(2): 1-13.
DING Rongjun, DOU Zechun, LUO Haihui. Technology and application of high-voltage and large-capacity power semiconductor devices[J]. Electric drive for locomotives, 2023(2): 1-13.
剡苏荣, 丁浩, 刘雄, 等. 高速动车电气屏柜用铝合金型材应力腐蚀行为研究[J]. 内燃机与配件, 2020(19): 118-122.
YAN Surong, DING Hao, LIU Xiong, et al. The stress corrosion cracking behavior of aluminum alloy for high-speed EMU electrical cabinet[J]. Internal combustion engine & parts, 2020(19): 118-122.
赵清良, 杨浩, 谭绍军, 等. 地铁车辆电传动系统标准化产品平台研制[J]. 现代城市轨道交通, 2019(5): 16-24.
ZHAO Qingliang, YANG Hao, TAN Shaojun, et al. Research and development of standardized product platform for electric drive system of metro vehicles[J]. Modern urban transit, 2019(5): 16-24.
刘波, 李榆银, 李建林, 等. 碳纤维复合材料轨道车辆电气柜体研制[J]. 机车电传动, 2021(1): 34-39.
LIU Bo, LI Yuyin, LI Jianlin, et al. Development of carbon-fiber composite electric cabinet of railway vehicles[J]. Electric drive for locomotives, 2021(1): 34-39.
何艳飞, 丁杰. 基于OptiStruct的辅助变流器盖板及吊耳优化[J]. 机车电传动, 2017(2): 72-75.
HE Yanfei, DING Jie. Cover and lug optimization of auxili-ary converter based on OptiStruct software[J]. Electric drive for locomotives, 2017(2): 72-75.
邓勇. 地铁辅助变流器柜体振动疲劳分析及轻量化研究[D]. 成都: 西南交通大学, 2018.
DENG Yong. Vibration fatigue analysis and lightweight design of auxiliary converter cabinet of metro vehicles[D]. Chengdu: Southwest Jiaotong University, 2018.
陈辛波, 杭鹏, 王叶枫. 电动汽车轻量化技术研究现状与发展趋势[J]. 汽车工程师, 2015(11): 23-28.
CHEN Xinbo, HANG Peng, WANG Yefeng. Current status and development trend of electric vehicle lightweight technology[J]. Automotive engineer, 2015(11): 23-28.
佚名. 中华人民共和国环境噪声污染防治法[Z]. 北京:全国人民代表大会常务委员会, 2021.
Anon. Environmental noise pollution prevention and control law of the people's republic of China[Z]. Beijing: the NPC Standing Committee, 2021.
张啸天, 王陶, 王伟利, 等. 某轴流风机噪声特性与降噪研究[J]. 南京理工大学学报, 2023, 47(5): 604-610.
ZHANG Xiaotian, WANG Tao, WANG Weili, et al. Research on noise characteristics and noise reduction of axial fan[J]. Journal of Nanjing university of science and technology, 2023, 47(5): 604-610.
王永胜, 丁杰, 张平, 等. 高速动车组牵引变流器振动特性及隔振优化研究[J]. 振动与冲击, 2017, 36(2): 134-138.
WANG Yongsheng, DING Jie, ZHANG Ping, et al. Vibration characteristics and isolation optimization of a traction converter of high-speed EMU[J]. Journal of vibration and shock, 2017, 36(2): 134-138.
郝保磊, 张笑慰, 许钦华, 等. 变流器气动噪声分析与噪声控制研究[J]. 声学技术, 2024, 43(2): 253-259.
HAO Baolei, ZHANG Xiaowei, XU Qinhua, et al. Aerodynamic noise analysis and noise control of converter[J]. Technical acoustics, 2024, 43(2): 253-259.
李芳环, 赵小娟, 陈爱平. 基于仿生学的风机降噪技术研究进展[J]. 电声技术, 2022, 46(5): 62-64.
LI Fanghuan, ZHAO Xiaojuan, CHEN Aiping. Research progress of fan noise reduction technology based on bionics[J]. Audio engineering, 2022, 46(5): 62-64.
许哲, 吴巧云. 兼顾降噪和通风性能的声学超材料研究进展[J]. 武汉工程大学学报, 2024, 46(2): 209-216.
XU Zhe, WU Qiaoyun. Research advances in acoustic metamaterials balancing noise reduction and ventilation performance[J]. Journal of Wuhan institute of technology, 2024, 46(2): 209-216.
赵艳彪, 李奕霆, 高南沙, 等. 声学黑洞在减振降噪中的研究进展[J]. 航空科学技术, 2024, 35(5): 1-14.
ZHAO Yanbiao, LI Yiting, GAO Nansha, et al. Research progress of acoustic black hole in vibration and noise reduction[J]. Aeronautical science and technology, 2024, 35(5): 1-14.
崔佳嘉, 马宏忠, 李楠, 等. 基于COMSOL的变压器铁心振动声场分布的有限元仿真[J]. 电子测量与仪器学报, 2022, 36(4): 48-55.
CUI Jiajia, MA Hongzhong, LI Nan, et al. Simulation and analysis of vibration and noise of oil immersed transformer core based on COMSOL[J]. Journal of electronic measurement and instrumentation, 2022, 36(4): 48-55.
蒋孝文, 彭宣霖, 李华, 等. 基于控制策略的牵引系统电磁噪声优化[J]. 噪声与振动控制, 2023, 43(4): 181-186.
JIANG Xiaowen, PENG Xuanlin, LI Hua, et al. Electromagnetic noise optimization of traction systems based on control strategy[J]. Noise and vibration control, 2023, 43(4): 181-186.
孙效杰, 顾鹏飞, 李培刚. 铁路客车乘坐舒适性评价研究[J]. 铁道科学与工程学报, 2022, 19(3): 642-648.
SUN Xiaojie, GU Pengfei, LI Peigang. Riding comfort ability evaluation of railway passenger cars[J]. Journal of railway science and engineering. 2022, 19(3): 642-648.
吴军科. 非平稳工况变流器IGBT模块结温平滑控制研究[D]. 重庆: 重庆大学, 2015.
WU Junke. Study on junction temperature smooth control of IGBT module in power converter under power fluctuation condition[D]. Chongqing: Chongqing University, 2015.
陈明, 胡安. IGBT结温模拟和探测方法比对研究[J]. 电机与控制学报, 2011, 15(12): 44-49.
CHEN Ming, HU An. Study on the junction temperature simulation and detection method of IGBT power electronic devices[J]. Electric machines and control, 2011, 15(12): 44-49.
陈建业, 吴文伟. 大功率变流器冷却技术及其进展[J]. 大功率变流技术, 2010(1): 15-24.
CHEN Jianye, WU Wenwei. Cooling technology for high power converter and its development[J]. High power converter technology, 2010(1): 15-24.
杨宁, 李岩磊, 马颖涛. 城轨列车牵引变流器箱体热仿真设计方法[J]. 铁道机车车辆, 2015, 35(3): 91-95.
YANG Ning, LI Yanlei, MA Yingtao. Body thermal simulation method for traction converter in urban rail train[J]. Railway locomotive & car, 2015, 35(3): 91-95.
WU Hui, ZHANG Gang, FENG Zhaozan, et al. Research on pumped two-phase single-sided cold plate of IGBT for rail transit applications[J]. Transportation safety and environment, 2021, 3(3): 1-11.
姚磊, 吴辉, 冯钊赞, 等. 基于冲击相变技术的IGCT冷板研究[J]. 真空与低温, 2021, 27(2): 152-158.
YAO Lei, WU Hui, FENG Zhaozan, et al. Research on IGCT cold plate based on jet phase change technology[J]. Vacuum and cryogenics, 2021, 27(2): 152-158.
STEELE H, ROBERTS C, HILLMANSEN S. Railway smart grids: drivers, benefits and challenges[J]. Proceedings of the institution of mechanical engineers, part F: journal of rail and rapid transit, 2019, 233(5): 526-536.
PEROTONI M B, GAVIAO M, DIETRICH A B. Electromagnetic simulation applied to automotive EMC testing[EB/OL]. (2014-11-01) [2024-5-21]. https://www.researchgate.net/publication/277212992_Electromagnetic_Simulation_ Applied_to_Automotive_EMC_Testinghttps://www.researchgate.net/publication/277212992_Electromagnetic_Simulation_Applied_to_Automotive_EMC_Testing.
范峻, HONGSEOK KIM, 蒲菠. 汽车电磁兼容中的建模挑战[J]. 安全与电磁兼容, 2021(6): 9-14.
FAN Jun, KIM H, PU Bo. Modeling challenges in automotive EMC[J]. Safety & EMC, 2021(6): 9-14.
JIA Kelin, RIBBENFJARD D. Prediction of the conducted emission generated by the electrified railway traction system[C]//IEEE. 2015 IEEE International Symposium on Electromagnetic Compatibility. Dresden: IEEE, 2015: 134-137.
SERDIUK T, BOTNAREVSCAIA R. Electromagnetic compatibility of train radio communication with the traction systems[C]//IEEE. 2022 International Symposium on Electromagnetic Compatibility - EMC Europe. Gothenburg: IEEE, 2022: 604-607.
PERSICHINI R D, DI FEBO D, CALÀ V, et al. EMC analysis of axle counters in the Italian railway network[J]. IEEE transactions on electromagnetic compatibility, 2015, 57(1): 44-51.
SADAMITSU S, LEUNG S W, LO W K, et al. Practical considerations of human exposure in railway systems[C]//IEEE. 2018 IEEE International Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC). Suntec City: IEEE, 2018: 28-31.
金开礼, 李相强, 张健穹, 等. 高速动车组牵引变流器EMI建模仿真研究[J]. 铁道机车车辆, 2023, 43(1): 63-69.
JIN Kaili, LI Xiangqiang, ZHANG Jianqiong, et al. Research on EMI modeling and simulation of traction converter for high-speed EMU[J]. Railway locomotive & car, 2023, 43(1): 63-69.
陈天宇, 宋术全, 卜丽东, 等. 四象限脉冲整流器模型预测电流控制算法研究[J]. 铁道机车车辆, 2019, 39(4): 16-20.
CHEN Tianyu, SONG Shuquan, BU Lidong, et al. Model predictive current control scheme of four-quadrant PWM rectifiers[J]. Railway locomotive & car, 2019, 39(4): 16-20.
张晓君, 罗忠鹏. 基于碳化硅MOSFET功率模块的牵引变流器电磁兼容应用研究[J]. 铁道车辆, 2022, 60(2): 83-88.
ZHANG Xiaojun, LUO Zhongpeng. Research on EMC application of traction inverter based on silicon carbide MOSFET power module[J]. Rolling stock, 2022, 60(2): 83-88.
李颖, 谭伟, 王志雄. 系统级辐射类电磁兼容预测和仿真分析方法研究[J]. 微波学报, 2014, 30(增刊2): 24-28.
LI Ying, TAN Wei, WANG Zhixiong. System level radiation EMC prediction and analysis method[J]. Journal of microwaves, 2014, 30(Suppl 2): 24-28.
LANGHE K D , BANDINELLI M , BIANCHI D, et al. Overview of solutions to solve and mitigate electromagnetic compatibility and interference (EMC/EMI) in context of vehicle electrification: 2019 JSAE Annual Congress Proceedings[C]. [S.l. : s.n.], 2019.
李虹, 张冲默, 王作兴, 等. 高速列车供电系统电磁干扰形成机理与抑制方法综述[J]. 中国电机工程学报, 2023, 43(8): 3137-3154.
LI Hong, ZHANG Chongmo, WANG Zuoxing, et al. Review of EMI mechanism and suppression methods in power supply system of high-speed train[J]. Proceedings of the CSEE, 2023, 43(8): 3137-3154.
向泽锐, 支锦亦, 李然, 等. 我国城市轨道列车工业设计研究综述[J]. 西南交通大学学报, 2021, 56(6): 1319-1328.
XIANG Zerui, ZHI Jinyi, LI Ran, et al. Review on industrial design of urban rail vehicles in China[J]. Journal of southwest jiaotong university, 2021, 56(6): 1319-1328.
刘宁, 杨芳. 智能互联时代的工业设计创新发展研究[J]. 包装工程, 2021, 42(14): 101-107.
LIU Ning, YANG Fang. Development of industrial design in intelligent and Internet era[J]. Packaging engineering, 2021, 42(14): 101-107.
0
Views
0
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution