(a) 铰接式三轴转向架结构图
Published:10 May 2024,
Received:02 March 2024,
Revised:29 April 2024
Scan for full text
Cite this article
Utilizing the multi-body dynamics software Simpack, a dynamics model was established for an articulated hot metal ladle car. The axle load distributions across different articulated positions were obtained from both theoretical calculations and simulations. Based on a comparative analysis the curve passing performance of the hot metal ladle car at different articulated positions, the optimal articulation position was determined, taking into account the axle load distributions, and the nonlinear critical speed of the hot metal ladle car at this optimal articulation position was verified. Further exploration was conducted to investigate the influence of line parameters, such as track irregularities and curve radii, as well as operating speeds on the operational safety of the car on small-radius curves. The results indicate that the optimal articulation position can be attained when the longitudinal distance from the center of the bolster spring to the first position wheelset's center is half of that to the articulation point at the rear arm of the middle axle box, ensuring a balanced load distribution among the car axles and the optimal curve passing performance. The nonlinear critical speed of the hot metal ladle car is identified to be 40 km/h, which meets the operational requirements with a safety margin. Moreover, track irregularities exert a significant influence on the operational safety performance indexes of the car on small radius curves, followed by curve radii. In contrast, the influence of curve superelevation is found less significant. Meanwhile, operating speeds are chosen to ensure operational safety under different track irregularity and curve radius conditions.
作为钢铁冶金行业运输中必不可少的一个环节,高温铁水的转运直接影响钢铁企业的生产效率。欧美国家在上世纪初率先使用铁水罐车运输液态金属铁水,极大地提高了冶金企业的运输效率,成为铁水转运技术发展的重要里程碑。尽管我国铁水罐车起步较晚,但随着我国经济的快速发展和对钢铁需求量的增加,我国的铁水罐车技术也得到了迅速发展,现已形成系列化产品,主要有ZT-35、ZT-65、ZT-100、ZT-140、ZT-170型铁水罐车[
近年来,相关学者针对铁水罐车结构设计及其动力学性能等问题开展了一系列研究。文献[
上述关于铁水罐车曲线通过性能的研究,大多是针对两轴转向架开展的,而关于采用铰接式三轴转向架的铁水罐车的动力学性能研究还比较少见。与两轴转向架相比,铰接式铁水罐车所采用的三轴转向架结构较为复杂,并且转向架固定轴距也随着轴数的增加而增加[
本文将重点对某铰接式铁水罐车的曲线通过性能进行分析,采用理论计算和仿真分析方法,讨论了转向架不同铰接位置时铁水罐车的轴重分配和曲线通过性能,确定了三轴转向架前后构架最佳铰接位置,在此基础上研究了轨道不平顺、曲线半径和曲线超高对铁水罐车通过小半径曲线时运行安全性指标的影响规律,研究结果可为进一步提高铁水罐车的运行安全提供参考。
本文以某铁水罐车为研究对象,其采用的转向架为铰接式三轴转向架,如
(a) 铰接式三轴转向架结构图
(b) 铰接式三轴转向架实物图
图1 铰接式铁水罐车转向架
Fig. 1 Bogie of articulated hot metal ladle car
此型铁水罐车在运营过程中已出现一些安全事故(如列车脱轨和高温铁水飞溅等),如
(a) 铁水罐车脱轨
(b) 高温铁水飞溅
图2 铁水罐车安全事故
Fig. 2 Scene of hot metal ladle car accident
图3 铰接式铁水罐车动力学模型
Fig. 3 Dynamics model of articulated hot metal ladle car
参数名称 | 参数值 | 参数名称 | 参数值 |
---|---|---|---|
车体质量/t | 32.11 |
一系纵向刚度(每轴箱)/ (MN·m-1) | 140.000 |
转向架质量/t | 10.70 |
一系横向刚度(每轴箱)/ (MN·m-1) | 120.000 |
轴重/t | 40 |
一系垂向刚度(每轴箱)/ (MN·m-1) | 160.000 |
定距/m | 5.4 | 二系纵向刚度/(MN·m-1) | 2.448 |
轴距/m | 1.3 | 二系横向刚度/(MN·m-1) | 2.448 |
轮径/m | 0.65 | 二系垂向刚度/(MN·m-1) | 3.688 |
某铰接式三轴转向架受力分析如
图4 铰接式三轴转向架受力分析图
Fig. 4 Stress analysis diagram of articulated three-axis bogie
取中间轴箱前后臂距离AB=760 mm,轴距L = 1 300 mm,由
(1) |
由静力与静力矩平衡方程可得:
(2) |
(3) |
基于轴重均衡分配原则,以及
为研究不同的k值对铁水罐车轴重分配的影响规律,分别选取
图5 一位轮对轴重和二位轮对轴重变化图
Fig. 5 Axle load variations of the first position and second position wheelsets
由上文可知,不同的铰接位置会影响轴重的分配,可能进一步影响铁水罐车的曲线通过性能。因此,本节对不同铰接位置时铁水罐车的曲线通过性能展开分析。
曲线半径设置为150 m,曲线轨距加宽设置为15 mm,曲线外轨超高设置为20 mm,速度设置为10 km/h,并施加轨道激励。铁水罐车属特种车辆范畴,对其动力学性能评价时参考文献[
评价指标 | 评价标准 |
---|---|
脱轨系数 | 第一限值不大于1.2,第二限值不大于1.0 |
轮重减载率 | 第一限值不大于0.65,第二限值不大于0.60 |
轮轴横向力/kN | 145 |
倾覆系数 | ≤0.8 |
(a) 脱轨系数
(b) 轮重减载率
(c) 轮轴横向力
(d) 倾覆系数
图6 铁水罐车不同铰接位置的曲线通过性能指标
Fig. 6 Curve passing performance indexes of hot metal ladle car at different articulated positions
由
综上所述,
为完整校核并分析铁水罐车性能,采用非线性临界速度对铰接式铁水罐车的运行稳定性进行了校核。线路设置为直线,其中30~80 m施加的轨道激励为美国五级轨道谱,轮对横移量高于0.1 mm时对应的速度为铁水罐车非线性临界速度。
(a) 一位轮对、二位轮对和三位轮对横移量
(b) 四位轮对、五位轮对和六位轮对横移量
图7 铁水罐车各轮对横移量随运行速度的变化
Fig. 7 Variations in lateral movement of wheelsets of hot metal ladle car with operating speeds
为了分析线路参数和车辆运行速度对铁水罐车运行安全性的影响,选取了轨道不平顺性系数[
钢铁企业对厂区铁路的维护不如铁路干线规范,为研究轨道不平顺的影响,以美国五级轨道谱乘以0.5~3.0的缩放系数[
图8 轨道不平顺性系数对铁水罐车运行安全性能指标的影响
Fig. 8 Influence of track irregularity coefficient on operational safety performance indexes of hot metal ladle car
由
以基础工况为参照,选取5种不同的曲线半径(R100 m、R150 m、R200 m、R250 m、R300 m)进行计算分析,得到了铁水罐车安全指标随曲线半径变化规律,如
(a) 脱轨系数
(b) 轮重减载率
(c) 轮轴横向力
(d) 倾覆系数
图9 曲线半径对铁水罐车运行安全性能指标的影响
Fig. 9 Influence of curve radius on operational safety performance indexes of hot metal ladle car
由
以基础工况为参照,选取5种不同的曲线超高(0 mm、10 mm、20 mm、30 mm、40 mm)进行计算分析,仿真得到了铁水罐车各安全指标随曲线超高的变化规律,如
(a) 脱轨系数
(b) 轮重减载率
(c) 轮轴横向力
(d) 倾覆系数
图10 曲线超高对铁水罐车运行安全性能指标的影响
Fig. 10 Influence of curve superelevation on operational safety performance indexes of hot metal ladle car
由
在实际运行中,车辆运行速度更容易控制,由前文可知,轨道不平顺性系数与曲线半径对铁水罐车曲线通过性能影响较大,曲线超高影响较小。因此,本节重点讨论轨道不平顺性系数、曲线半径与运行速度对铁水罐车曲线通过安全性能指标的耦合影响规律。以基础工况为参考,选取了5种不同的运行速度(5 km/h、10 km/h、15 km/h、20 km/h、25 km/h)对铁水罐车曲线通过安全性进行计算分析。
(a) 脱轨系数
(b) 轮重减载率
(c) 轮轴横向力
(d) 倾覆系数
图11 轨道不平顺性系数与运行速度对铁水罐车运行安全性能指标的影响
Fig. 11 Influence of track irregularity coefficient and operating speed on operational safety performance indexes of hot metal ladle car
(a) 脱轨系数
(b) 轮重减载率
(c) 轮轴横向力
(d) 倾覆系数
图12 曲线半径与运行速度对铁水罐车运行安全性能指标的影响
Fig. 12 Influence of curve radius and operating speed on operational safety performance indexes of hot metal ladle car
综合考虑上述指标,在仿真范围内,基于各轨道不平顺性系数和不同曲线半径,推荐的运行速度如
速度/ (km·h-1) | 轨道不平顺性系数 | 曲线半径/m | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 100 | 150 | 200 | 250 | 300 | |
5 | √ | √ | √ | √ | √ | √ | √ | √ | |||
10 | √ | √ | √ | √ | √ | √ | √ | √ | |||
15 | √ | √ | √ | √ | √ | √ | √ | √ | |||
20 | √ | √ | √ | √ | √ | √ | √ | ||||
25 | √ | √ | √ | √ | √ | √ | √ |
本文对某铰接式铁水罐车的曲线通过性能进行了分析,采用理论计算和仿真分析方法,讨论了转向架不同铰接位置时铁水罐车的轴重分配与曲线通过性能,确定了三轴转向架前、后构架最佳铰接位置,在此基础上研究了轨道不平顺、曲线半径、曲线超高、车辆运行速度对铁水罐车通过小半径曲线时运行安全性指标的影响规律,得出以下结论:
①三轴转向架前、后构架的最佳铰接位置是车辆枕簧中心与一位轮对轴箱中心的纵向距离为其与中间轴箱后臂铰接点纵向距离50%(
②一位轮对和四位轮对的脱轨系数始终最大,而且对轨道不平顺、曲线半径较为敏感;二位轮对和五位轮对的轮重减载率、轮轴横向力始终最大,其轮重减载率对轨道不平顺最为敏感;三位轮对和六位轮对在不同线路参数下各项指标较小且变化平缓,安全性好。
③轨道不平顺对铁水罐车曲线通过性能影响最大,曲线半径次之,最后为曲线超高;在仿真范围内,当轨道不平顺性系数分别为0.5、1.0、1.5时,铁水罐车以5~25 km/h均可安全通过曲线半径R150 m的曲线,当轨道不平顺性系数大于1.5时,不推荐铁水罐车通过曲线半径R不大于150 m的曲线;当轨道不平顺性系数为1.0(即轨道激励为美国五级轨道谱),曲线半径为R100 m时,不推荐铁水罐车以大于20 km/h的速度运行,在其他曲线半径下,5~25 km/h均可运行。
由于铁水罐车脱轨事故原因是复杂的,后续将开展编组、坡道和运输方式等因素对其影响的研究。
况作尧. 大型冶金企业铁水运输方式的现状分析与发展[J]. 铁道车辆, 2008, 46(11): 29-31. [Baidu Scholar]
KUANG Zuoyao. Analysis of the present ways of transport of molten iron in large metallurgical enterprises and development[J]. Rolling stock, 2008, 46(11): 29-31. [Baidu Scholar]
李赫. 120 t铁水罐车罐体及转向架结构有限元分析[D]. 鞍山: 辽宁科技大学, 2014. [Baidu Scholar]
LI He. FEM analysis and optimization of tank and bogie of 120 t molten-iron transport vehicle[D]. Anshan: University of Science and Technology Liaoning, 2014. [Baidu Scholar]
郝晓静. 高炉铁水罐车支座的强度校核[J]. 冶金设备, 2013(增刊1): 35-37. [Baidu Scholar]
HAO Xiaojing. Strength proofread of saddle support on blast furnace hot metal ladle car[J]. Metallurgical equipment, 2013(Suppl 1): 35-37. [Baidu Scholar]
景安洲, 阳光武, 肖守讷, 等. 140 t铁水罐车动力学性能分析[J]. 铁道机车车辆, 2022, 42(5): 1-8. [Baidu Scholar]
JING Anzhou, YANG Guangwu, XIAO Shoune, et al. Dynamic performance analysis of 140 t hot-metal tank car[J]. Railway locomotive & car, 2022, 42(5): 1-8. [Baidu Scholar]
张良威, 李芾, 黄运华, 等. 特种铁水罐车曲线通过性能分析[J]. 铁道机车车辆, 2009, 29(2): 35-37. [Baidu Scholar]
ZHANG Liangwei, LI Fu, HUANG Yunhua, et al. Analysis of curving performance of special molten iron tank car[J]. Railway locomotive & car, 2009, 29(2): 35-37. [Baidu Scholar]
谷春丰. 唐钢重载铁路特种车辆轮对偏磨研究[J]. 铁道车辆, 2019, 57(12): 33-35. [Baidu Scholar]
GU Chunfeng. Research on uneven wear of wheelsets for specialized heavy haul railway cars in Tangsteel company[J]. Rolling stock, 2019, 57(12): 33-35. [Baidu Scholar]
王竣. 鱼雷罐车通过小半径曲线的动力学性能分析[D]. 成都: 西南交通大学, 2014. [Baidu Scholar]
WANG Jun. Analysis of dynamics performance of torpedo ladle car through small radius curve[D]. Chengdu: Southwest Jiaotong University, 2014. [Baidu Scholar]
王卓, 裴国杰. 冶金企业铁路冶金车辆快速救援应用与创新[J]. 中国金属通报, 2018(12): 163. [Baidu Scholar]
WANG Zhuo, PEI Guojie. Application and innovation of rapid rescue of railway metallurgical vehicles in metallurgical enterprises[J]. China metal bulletin, 2018(12): 163. [Baidu Scholar]
严隽耄, 傅茂海. 车辆工程[M]. 3版. 北京: 中国铁道出版社, 2011. [Baidu Scholar]
YAN Junmao, FU Maohai. Vehicle engineering[M]. 3rd ed. Beijing: China Railway Publishing House, 2011. [Baidu Scholar]
毕鑫, 马卫华, 罗世辉. 机车转向架通过曲线的动态过程分析[J]. 机械工程学报, 2013, 49(22): 150-156. [Baidu Scholar]
BI Xin, MA Weihua, LUO Shihui. Dynamic process analysis of locomotive bogie curve negotiation[J]. Journal of mechanical engineering, 2013, 49(22): 150-156. [Baidu Scholar]
李秋泽, 单巍, 张英春, 等. 中国高速动车组转向架技术发展及展望[J]. 机车电传动, 2023(2): 14-35. [Baidu Scholar]
LI Qiuze, SHAN Wei, ZHANG Yingchun, et al. Technological development and prospect of China's high speed EMU bogies[J]. Electric drive for locomotives, 2023(2): 14-35. [Baidu Scholar]
尹振坤, 贾洪龙, 梁云, 等. 新型200 km/h动力集中动车组拖车转向架开发[J]. 机车电传动, 2022(6): 31-38. [Baidu Scholar]
YIN Zhenkun, JIA Honglong, LIANG Yun, et al. Development of trailer bogies for new 200 km/h power centralized EMU[J]. Electric drive for locomotives, 2022(6): 31-38. [Baidu Scholar]
谢素明, 岳凌汉, 高阳, 等. 基于刚-柔混合模型的300T铁水罐车动力学仿真[J]. 计算机仿真, 2007(1): 270-273. [Baidu Scholar]
XIE Suming, YUE Linghan, GAO Yang, et al. Dynamic simulation of 300T hot metal car base on rigid-flex hybrid modeling technology[J]. Computer simulation, 2007(1): 270-273. [Baidu Scholar]
翟婉明. 车辆-轨道耦合动力学:下册[M]. 4版. 北京: 科学出版社, 2015. [Baidu Scholar]
ZHAI Wanming. Vehicle-track coupling dynamics:Volume 2 [M]. 4th ed. Beijing: Science Press, 2015. [Baidu Scholar]
罗仁, 石怀龙. 铁道车辆系统动力学及应用[M]. 成都: 西南交通大学出版社, 2018. [Baidu Scholar]
LUO Ren, SHI Huailong. Dynamics of railway vehicle systems and application[M]. Chengdu: Southwest Jiaotong University Press, 2018. [Baidu Scholar]
龚敬, 吴兴文, 刘阳, 等. 基于振动加速度的转向架构架载荷反演研究[J/OL]. 机车电传动: 1-10. (2024-02-08) [2024-03-06]. https://doi.org/10.13890/j.issn.1000-128X.2024.01.107. [Baidu Scholar]
GONG Jing, WU Xingwen, LIU Yang, et al. Research on load inversion of bogie frame based on vibration acceleration[J/OL]. Electric drive for locomotives: 1-10. (2024-02-08) [2024-03-06]. https://doi.org/10.13890/j.issn.1000-128X.2024.01.107. [Baidu Scholar]
朱海燕, 黎洁, 尹必超, 等. 牵引电机悬挂参数对高速列车牵引传动部件振动特性的影响[J]. 交通运输工程学报, 2023, 23(1): 156-169. [Baidu Scholar]
ZHU Haiyan, LI Jie, YIN Bichao, et al. Influence of suspension parameters of traction motor on vibration characteristics of traction drive components of high-speed train[J]. Journal of traffic and transportation engineering, 2023, 23(1): 156-169. [Baidu Scholar]
张兆文. 高速动车组轻量化转向架结构强度分析[D]. 北京: 北京交通大学, 2022. [Baidu Scholar]
ZHANG Zhaowen. Structural strength analysis of lightweight bogie for high-speed EMU[D]. Beijing: Beijing Jiaotong University, 2022. [Baidu Scholar]
金学松, 沈志云. 轮轨滚动接触力学的发展[J]. 力学进展, 2001(1): 33-46. [Baidu Scholar]
JIN Xuesong, SHEN Zhiyun. Development of rolling contact mechanics of wheel/rail systems[J]. Advances in mechanics, 2001(1): 33-46. [Baidu Scholar]
铁道部标准计量研究所. 铁道特种车辆和轨行机械动力学性能评定及试验方法: GB/T 17426—1998[S]. 北京:中国标准出版社, 1999. [Baidu Scholar]
Institute of Standards and Metrology of the Ministry of Railways. Dynamic performance evaluation and test method for particular class vehicles and tracked machine: GB/T 17426—1998[S]. Beijing: Standards Press of China, 1999. [Baidu Scholar]
高广军, 卓天宇, 关维元. 高速列车曲线通过性能分析及脱轨影响因素研究[J]. 铁道科学与工程学报, 2024, 21(3): 901-912. [Baidu Scholar]
GAO Guangjun, ZHUO Tianyu, GUAN Weiyuan. Analysis of high-speed train curve negotiation performance and research on factors affecting derailment[J]. Journal of railway science and engineering, 2024, 21(3): 901-912. [Baidu Scholar]
159
Views
229
Downloads
0
CSCD
0
CNKI Cited
Related Articles
Related Author
Related Institution