浏览全部资源
扫码关注微信
宝鸡中车时代工程机械有限公司 西安研发中心,陕西 西安 710000
Published:10 May 2024,
Received:23 April 2023,
Revised:01 May 2024,
扫 描 看 全 文
徐坤, 雒耀祥, 张亚禹, 等. 某液传轨道工程车动力传动系统扭振分析[J]. 机车电传动, 2024(3): 70-78.
XU Kun, LUO Yaoxiang, ZHANG Yayu, et al. Torsional vibration analysis of the power transmission system in a hydraulic rail engineering vehicle[J]. Electric drive for locomotives,2024(3): 70-78.
徐坤, 雒耀祥, 张亚禹, 等. 某液传轨道工程车动力传动系统扭振分析[J]. 机车电传动, 2024(3): 70-78. DOI:10.13890/j.issn.1000-128X.2024.03.009.
XU Kun, LUO Yaoxiang, ZHANG Yayu, et al. Torsional vibration analysis of the power transmission system in a hydraulic rail engineering vehicle[J]. Electric drive for locomotives,2024(3): 70-78. DOI:10.13890/j.issn.1000-128X.2024.03.009.
扭转振动是动力传动系统重要的振动形式,特别是对于动力传递路径较长的轨道工程车。文章针对某液传轨道工程车的动力传动系统,建立多刚体扭振模型,分析了系统自由扭振和强迫扭振特性,对比了有无扭转减振器时曲轴的振动响应,研究了弹性联轴节参数对系统扭振响应的影响。结果表明,单节点弹联模态是频率最低的扭转模态,当联轴节扭转刚度小于0.005 7 MN∙m/rad 时,单节点的联轴节扭振模态能避开工作转速范围内所有谐次的干扰力矩的共振点;曲轴前端扭转角位移、扭转应力随着发动机转速的升高而增大,加装扭转减振器可以明显减小曲轴扭振响应;怠速时(600 r/min),联轴节相对阻尼系数在0.5~2.0范围内能明显改善输出力矩不均匀性,而高速时(1 800 r/min),较小的联轴节阻尼系数有利于改善输出力矩不均匀性。为了兼顾怠速与高速工况,联轴节相对阻尼系数尽量取小一些,比如取0.5。
Torsional vibration represents a crucial aspect of vibration in power transmission systems
especially for rail engineering vehicles featuring long power transmission pathways. In this study
a multi-rigid-body torsional vibration model was created for the power transmission system of a hydraulic rail engineering vehicle. The analysis focused on the free and forced torsional vibration characteristics of the system. A comparison was conducted on the vibration responses of crankshafts with or without a torsional damper. Further study delved into the influence of elastic coupling parameters on the system's torsional vibration responses. The results highlight the single-node elastic coupling mode as the torsional mode with the lowest frequency. In the single-node torsional vibration mode
couplings with a torsional stiffness less than 0.005 7 MN∙m/rad are determined to effectively avoid resonance points from disturbance torques across all harmonics within the operational speed range. Torsional angular displacements at the crankshaft front end and torsional stress levels exhibit an increase with rising engine speeds. The introduction of a torsional damper lead to a significant reduction in the torsional vibration responses of the crankshaft. At idle speed (600 r/min)
controlling the relative damping coefficient of couplings between 0.5 and 2.0 significantly reduces the output torque inequality
while at high speeds (1 800 r/min)
a lower damping coefficient is conducive to mitigating this inequality. In order to adapt to both idle and high-speed conditions
it is recommended to keep the relative damping coefficient of couplings as minimal as possible
such as 0.5.
液力传动轨道工程车动力传动系统扭振
hydraulicrail engineering vehiclepower transmission systemtorsional vibration
朱玉田, 苏健君, 刘钊, 等. 直列六缸发动机激振力分析与仿真[J]. 中国工程机械学报, 2018, 16(4): 327-331.
ZHU Yutian, SU Jianjun, LIU Zhao, et al. Analyzing and simulation of exciting forces of L6 engine[J]. Chinese journal of construction machinery, 2018, 16(4): 327-331.
毕金亮, 李静波, 李宏成, 等. 动力传动系统扭转模态及灵敏度分析[J]. 振动工程学报, 2010, 23(6): 676-680.
BI Jinliang, LI Jingbo, LI Hongcheng, et al. Torsional vibration modal and sensitivity analysis of a drive-train system[J]. Journal of vibration engineering, 2010, 23(6): 676-680.
时培明, 夏克伟, 刘彬, 等. 多自由度轧机传动系统非线性非主共振扭振特性[J]. 振动与冲击, 2015, 34(12): 35-41.
SHI Peiming, XIA Kewei, LIU Bin, et al. Non-main resonance characteristics of nonlinear torsional vibration of rolling mill's multi-degree-of-freedom main drive system[J]. Journal of vibration and shock, 2015, 34(12): 35-41.
宋大凤, 高福旺, 曾小华, 等. 混合动力汽车传动系统扭振建模与分析[J]. 东北大学学报(自然科学版), 2020, 41(5): 679-685.
SONG Dafeng, GAO Fuwang, ZENG Xiaohua, et al. Torsional vibration modeling and analysis for hybrid vehicle transmission system[J]. Journal of northeastern university(natural science), 2020, 41(5): 679-685.
马相龙, 薛增喜, 李涛, 等. 船舶复杂轴系扭转振动建模及动力学分析[J]. 船舶工程, 2018, 40(6): 36-40.
MA Xianglong, XUE Zengxi, LI Tao, et al. Torsional vibration modeling and dynamic analysis of complex ship shaft systems[J]. Ship engineering, 2018, 40(6): 36-40.
黄丰云, 宋鹏程. 汽车传动系扭振数学模型的建立及验证[J]. 机械设计与制造, 2020(6): 43-47.
HUANG Fengyun, SONG Pengcheng. Establishment and verification of a vehicle driveline torsional vibration mathematical model[J]. Machinery design & manufacture, 2020(6): 43-47.
吕孟理, 温敏, 邵文彬. 扭转吸振器特性对动力传动系统扭振影响[J]. 汽车制造业, 2022(2): 28-30.
LYU Mengli, WEN Min, SHAO Wenbin. Effect of torsional shock absorber characteristics on torsional vibration of power train system[J]. Automobil industrie, 2022(2): 28-30.
闫明刚, 侯之超, 杨福源, 等. 某型混合动力传动系统扭振减振器参数的优化设计[J]. 汽车技术, 2015(8): 1-5.
YAN Minggang, HOU Zhichao, YANG Fuyuan, et al. Parameter optimization on the torsional vibration damper in the drive line of a hybrid electric bus[J]. Automobile technology, 2015(8): 1-5.
张小蝉, 陆丹丹, 李钢, 等. 机车柴油发电机组传动轴系的轴向振动研究及优化设计[J]. 传动技术, 2018, 32(3): 27-30.
ZHANG Xiaochan, LU Dandan, LI Gang, et al. Research on axial vibration and optimization design of locomotive diesel generator set drive shafts[J]. Drive system technique, 2018, 32(3): 27-30.
范骏威, 杨卫英, 于姝雯. 低转速时推进系统扭转振动分析[J]. 船舶, 2018, 29(3): 52-59.
FAN Junwei, YANG Weiying, YU Shuwen. Analysis of torsion vibration of propulsion system at low speed[J]. Ship & boat, 2018, 29(3): 52-59.
卜东一. 汽车动力传动系统扭振及NVH性能影响[D]. 天津: 河北工业大学, 2016.
BU Dongyi. Automotive driveline torsional vibration and influence on the performance of NVH[D]. Tianjin: Hebei University of Technology, 2016.
张保成, 苏铁熊, 张林仙. 内燃机动力学[M]. 北京: 国防工业出版社, 2009.
ZHANG Baocheng, SU Tiexiong, ZHANG Linxian. Internal combustion engine dynamics[M]. Beijing: National Defense Industry Press, 2009.
张敬义. 内燃机轴系弹联参数设计方法研究[D]. 成都: 西南交通大学, 2012.
ZHANG Jingyi. Research of parameter design for combustion engine elastic coupling[D]. Chengdu: Southwest Jiaotong University, 2012.
张红学, 冷水红. 机车柴油机弹性联轴节弹簧片断裂原因分析[J]. 柴油机设计与制造, 2018, 24(3): 26-28.
ZHANG Hongxue, LENG Shuihong. Analysis of breakdown cause of elastic joint spring of locomotive diesel engine[J]. Design & manufacture of diesel engine, 2018, 24(3): 26-28.
江国和, 王国治. 弹性联轴节对摆盘式发动机轴系振动的影响[J]. 华东船舶工业学院学报, 1997(1): 38-42.
JIANG Guohe, WANG Guozhi. Effect of elastic coupling on wobble plate piston engine shafting vibration[J]. Journal of east China shipbuilding institute, 1997(1): 38-42.
李和言, 马彪, 马洪文, 等. 弹性联轴器对车辆动力传动系统扭振特性影响研究[J]. 机械强度, 2003, 25(6): 596-603.
LI Heyan, MA Biao, MA Hongwen, et al. Study on torsional vibration performance of vehicle powertrain affected by elastic coupling[J]. Journal of mechanical strength, 2003, 25(6): 596-603.
袁跃兰, 马彪. 弹性联轴器对车辆动力传动系统扭振影响研究[J]. 农业装备与车辆工程, 2018, 56(2): 20-24.
YUAN Yuelan, MA Biao. Study on effect of elastic coupling on torsional vibration for vehicle power-train system[J]. Agricultural equipment & vehicle engineering, 2018, 56(2): 20-24.
0
Views
3
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution