浏览全部资源
扫码关注微信
1.西南交通大学 利兹学院,四川 成都 610031
2.西南交通大学 电气工程学院,四川 成都 610031
3.西南交通大学 物理科学与技术学院,四川 成都 610031
Published:10 March 2024,
Received:10 December 2023,
Revised:19 February 2024,
扫 描 看 全 文
兰尉尹, 崔巍, 陈文轩, 等. 一种基于关断电压的IGBT模块结温监测方法[J]. 机车电传动, 2024(2): 132-139.
LAN Weiyin, CUI Wei, CHEN Wenxuan, et al. A method for monitoring junction temperature of IGBT module based on turn-off voltage[J]. Electric drive for locomotives,2024(2): 132-139.
兰尉尹, 崔巍, 陈文轩, 等. 一种基于关断电压的IGBT模块结温监测方法[J]. 机车电传动, 2024(2): 132-139. DOI:10.13890/j.issn.1000-128X.2024.02.016.
LAN Weiyin, CUI Wei, CHEN Wenxuan, et al. A method for monitoring junction temperature of IGBT module based on turn-off voltage[J]. Electric drive for locomotives,2024(2): 132-139. DOI:10.13890/j.issn.1000-128X.2024.02.016.
实现准确的结温监测对增强绝缘栅双极晶体管(IGBT)模块的可靠性、延长器件寿命至关重要。文章提出了一种基于关断电压的IGBT模块结温监测方法,具有不受负载电流干扰的特性。该方法首先验证了关断电压作为温敏电参数的合理性;其次,采用深度神经网络(DNN),排除关断电压对负载电流的依赖,达到不同工况下保持准确结温预测的目的;最后,通过单相脉宽调制(PWM)进行试验验证。结果显示,该结温监测方法误差在±5 ℃的范围内,这表明利用DNN优化结温监测是可行的。
The precise junction temperature monitoring is of paramount importance for enhancing the reliability of insulated gate bipolar transistor (IGBT) modules and extending the lifespan of devices. This paper introduces a method for monitoring junction temperature of IGBT modules based on turn-off voltages (TOV)
which highlights resistance to load currents. The study initially verified the rationality of using TOVs as a temperature-sensitive electrical parameter. The deep neural network (DNN) technology was subsequently employed to eradicate the dependence of TOVs on load currents
facilitating accurate junction temperature prediction under varying operational conditions. The proposed method was validated through a single-phase pulse width modulation (PWM) experiment. The findings reveal an error range of ±5 ℃ for this method
demonstrating the feasibility of optimizing junction temperature monitoring through DNN utilization.
绝缘栅双极晶体管结温监测深度神经网络温敏电参数关断电压
insulated gate bipolar transistor (IGBT)junction temperature monitoringdeep neutral network (DNN)temperature-sensitive parameterturn-off voltage (TOV)
余伟, 郑宇, 袁涛, 等. IGBT模块动态雪崩测试研究[J]. 机车电传动, 2023(5): 139-144.
YU Wei, ZHENG Yu, YUAN Tao, et al. A study on dynamic avalanche test of IGBT module[J]. Electric drive for locomotives, 2023(5): 139-144.
HANIF A, YU Yuechuan, DEVOTO D, et al. A comprehensive review toward the state-of-the-art in failure and lifetime predictions of power electronic devices[J]. IEEE transactions on power electronics, 2019, 34(5): 4729-4746.
王泽群, 田小宇, 宋致儒, 等. 基于导通饱和压降的IGBT器件结温在线提取方法[J]. 机车电传动, 2023(5): 170-176.
WANG Zequn, TIAN Xiaoyu, SONG Zhiru, et al. An online extraction method of junction temperature in IGBT devices with saturation voltage drop[J]. Electric drive for locomotives, 2023(5): 170-176.
陈杰, 邓二平, 赵雨山, 等. 高压大功率器件结温在线测量方法综述[J]. 中国电机工程学报, 2019, 39(22): 6677-6687.
CHEN Jie, DENG Erping, ZHAO Yushan, et al. Review of on-line junction temperature measurement methods of high voltage power electronics[J]. Proceedings of the CSEE, 2019, 39(22): 6677-6687.
JI Bing, SONG Xueguan, CAO Wenping, et al. In situ diagnostics and prognostics of solder fatigue in IGBT modules for electric vehicle drives[J]. IEEE transactions on power electronics, 2015, 30(3): 1535-1543.
WANG Huimin, XU Zhiliang, GE Xinglai, et al. A junction temperature monitoring method for IGBT modules based on turn-off voltage with convolutional neural networks[J]. IEEE transactions on power electronics, 2023, 38(8): 10313-10328.
CHEN Yuxiang, LUO Haoze, LI Wuhua, et al. Analytical and experimental investigation on a dynamic thermo-sensitive electrical parameter with maximum dIC/dt during turn-off for high power trench gate/field-stop IGBT modules[J]. IEEE transactions on power electronics, 2017, 32(8): 6394-6404.
VAN DER BROECK C H, GOSPODINOV A, DE DONCKER R W. IGBT junction temperature estimation via gate voltage plateau sensing[J]. IEEE transactions on industry applications, 2018, 54(5): 4752-4763.
KHATIR Z. Junction temperature investigations based on a general semi-analytical formulation of forward voltage of power diodes[J]. IEEE transactions on electron devices, 2012, 59(6): 1716-1722.
BRYANT A, YANG Shaoyong, MAWBY P, et al. Investigation into IGBT dV/dt during turn-off and its temperature dependence[J]. IEEE transactions on power electronics, 2011, 26(10): 3019-3031.
刘宾礼, 唐勇, 罗毅飞, 等. 基于电压变化率的IGBT结温预测模型研究[J]. 物理学报, 2014, 63(17): 251-260.
LIU Binli, TANG Yong, LUO Yifei, et al. Investigation of the prediction model of IGBT junction temperature based on the rate of voltage change[J]. Acta physica sinica, 2014, 63(17): 251-260.
PENG Lin, MA Lei, SONG Wensheng, et al. A simple model predictive instantaneous current control for single-phase PWM converters in stationary reference frame[J]. IEEE transactions on power electronics, 2022, 37(7): 7629-7639.
LIN Chunxu, WANG Huimin, DENG Qingli, et al. Impact analysis of digital delay on power factor and compensation strategy for electric traction PWM rectifier[J]. IEEE journal of emerging and selected topics in power electronics, 2023, 11(1): 952-961.
肖凯, 许琳浩, 王振, 等. 集成结温在线监测功能的IGBT智能驱动器[J]. 半导体技术, 2024, 49(2): 183-188.
XIAO Kai, XU Linhao, WANG Zhen, et al. IGBT intelligent driver integrated with junction temperature online monitoring function[J]. Semiconductor technology, 2024, 49(2): 183-188.
0
Views
19
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution