浏览全部资源
扫码关注微信
1.湖南大学 机械与运载工程学院,湖南 长沙 410082
2.株洲中车时代电气股份有限公司,湖南 株洲 412001
Published:10 March 2024,
Received:01 September 2023,
Revised:05 February 2024,
扫 描 看 全 文
戴计生, 胡德安, 徐海龙, 等. 基于深度高斯过程的永磁牵引电机匝间短路分级评估方法[J]. 机车电传动, 2024(2): 108-117.
DAI Jisheng, HU Dean, XU Hailong, et al. Grading evaluation method for inter-turn short circuit of permanent magnet traction motor based on deep Gaussian processes[J]. Electric drive for locomotives,2024(2): 108-117.
戴计生, 胡德安, 徐海龙, 等. 基于深度高斯过程的永磁牵引电机匝间短路分级评估方法[J]. 机车电传动, 2024(2): 108-117. DOI:10.13890/j.issn.1000-128X.2024.02.013.
DAI Jisheng, HU Dean, XU Hailong, et al. Grading evaluation method for inter-turn short circuit of permanent magnet traction motor based on deep Gaussian processes[J]. Electric drive for locomotives,2024(2): 108-117. DOI:10.13890/j.issn.1000-128X.2024.02.013.
定子绕组匝间短路是影响永磁牵引电机安全稳定运行的主要故障之一,受运行工况、供电与电机本体不平衡的影响,现有方法难以实现永磁牵引电机匝间短路在线精准评估,这成为永磁电机推广应用迫切需要解决的关键技术难题。因此,文章提出一种基于多特征融合的深度高斯过程永磁牵引电机匝间短路分级评估方法:首先通过建立永磁牵引电机匝间短路故障模型,提取电流不平衡、电流三次谐波与
dq
电流的二次谐波特征;然后采用一种双随机变分推断深度高斯过程(Doubly Stochastic Deep Gaussian Processes
DSDGP)方法对提取特征进行融合训练建模,实现永磁牵引电机匝间短路劣化状态在线分级评估;最后通过永磁电机匝间短路试验与现场案例进行算法验证。结果表明,文章所提方法在多特征融合条件下的评估准确率达到95%以上,相较于支持向量机(support vector machine
SVM)和反向传播神经网络(back-propagation neural
BPN)等分类方法,具有准确率高,适用于变工况、小样本的工程实际应用环境等优点,解决了永磁牵引电机匝间短路早期故障检测及故障严重程度评估的行业难题。
The inter-turn short circuit of stator winding is one of the main faults affecting the safe and stable operation of permanent magnet traction motors. Affected by operating conditions
power supply and motor body imbalance
existing methods are difficult to achieve online accurate evaluation of inter-turn short circuit of permanent magnet traction motors. This has become a key technical problem that urgently needs to be solved for the widespread application of permanent magnet motors. Therefore
this paper proposed a grading evaluation method for inter-turn short circuit in permanent magnet traction motors based on multi-feature fusion of deep Gaussian processes. Firstly
by establishing a fault model for inter-turn short circuit in permanent magnet traction motors
features such as current unbalance
third harmonic currents and second harmonic feature of
dq
currents were extracted. Then
a doubly stochastic deep Gaussian processes (DSDGP) method was adopted to fuse and train the extracted features
achieving online grading evaluation of inter-turn short circuit degradation in permanent magnet traction motors. Finally
the algorithm was validated through permanent magnet motor inter-turn short circuit tests and field cases. The results show that the proposed method achieves an evaluation accuracy of over 95% under the condition of multi-feature fusion. Compared with classification methods such as support vector machine (SVM) and back-oropagation neural network (BPN)
it exhibits high accuracy and suitability for engineering practical environments with variable operating conditions and small samples
addressing industry challenges in early fault detection and severity evaluation of inter-turn short circuits in permanent magnet traction motors.
永磁牵引电机多维特征融合匝间短路分级评估深度高斯过程
permanent magnet traction motormulti-feature fusioninter-turn short circuitgraded evaluationdeep Gaussian processes
冯江华. 轨道交通永磁电机牵引系统关键技术及发展趋势[J]. 机车电传动, 2018(6): 9-17.
FENG Jianghua. Key technology and development trend of permanent magnet motor traction system for rail transit[J]. Electric drive for locomotives, 2018(6): 9-17.
田春春. 城市轨道交通车辆永磁牵引系统应用研究[J]. 交通世界, 2021(增刊2): 23-24.
TIAN Chunchun. Application research on permanent magnet traction system for urban rail transit vehicles[J]. Transpo world, 2021(Suppl 2): 23-24.
柯思勤. 永磁电机故障诊断和容错技术概述[J]. 大功率变流技术, 2017(2): 11-16.
KE Siqin. Review on fault diagnosis and fault tolerant control for permanent magnet electrical machines[J]. High power converter technology, 2017(2): 11-16.
吴国沛, 余银犬, 涂文兵. 永磁同步电机故障诊断研究综述[J]. 工程设计学报, 2021, 28(5): 548-558.
WU Guopei, YU Yinquan, TU Wenbing. Review of research on fault diagnosis of permanent magnet synchronous motor[J]. Chinese journal of engineering design, 2021, 28(5): 548-558.
张周磊, 李垣江, 李梦含, 等. 基于深度学习的永磁同步电机故障诊断方法[J]. 计算机应用与软件, 2019, 36(10): 123-129.
ZHANG Zhoulei, LI Yuanjiang, LI Menghan, et al. Fault diagnosis method of permanent magnet synchronous motor based on depth learning[J]. Computer applications and software, 2019, 36(10): 123-129.
SARIKHANI A, MOHAMMED O A. Inter-turn fault detection in PM synchronous machines by physics-based back electromotive force estimation[J]. IEEE transactions on industrial electronics, 2013, 60(8): 3472-3484.
LIANG Hong, CHEN Yong, LIANG Siyuan, et al. Fault detection of stator inter-turn short-circuit in PMSM on stator current and vibration signal[J]. Applied sciences, 2018, 8(9): 1677.
MOOSAVI S S, ESMAILI Q, DJERDIR A, et al. Inter-turn fault detection in stator winding of PMSM using wavelet transform[C]//IEEE. 2017 IEEE Vehicle Power and Propulsion Conference. Belfort: IEEE, 2017: 1-5.
SIDDIQUI K M, BAKHSH F I, AHMAD R, et al. Advanced signal processing based condition monitoring of PMSM for stator-inter turn fault[C]//IEEE. 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering. Dehradun: IEEE, 2021: 1-4.
ROSERO J A, ROMERAL L, ORTEGA J A, et al. Short-circuit detection by means of empirical mode decomposition and wigner-ville distribution for PMSM running under dynamic condition[J]. IEEE transactions on industrial electronics, 2009, 56(11): 4534-4547.
王红君, 刘冬生, 岳有军. 基于小波分析和神经网络的电机故障诊断方法研究[J]. 电气传动, 2010, 40(3): 69-73.
WANG Hongjun, LIU Dongsheng, YUE Youjun. Study of the fault diagnosis method based on wavelet time and frequency analysis and the neural network in the motor[J]. Electric drive, 2010, 40(3): 69-73.
QUIROGA J, CARTES D A, EDRINGTON C S, et al. Neural network based fault detection of PMSM stator winding short under load fluctuation[C]//IEEE. 2008 13th International Power Electronics and Motion Control Conference. Poznan: IEEE, 2008: 793-798.
QUIROGA J, LIU Li, CARTES D A. Fuzzy logic based fault detection of PMSM stator winding short under load fluctuation using negative sequence analysis[C]//IEEE. 2008 American Control Conference. Seattle, WA: IEEE, 2008: 4262-4267.
张坤鹏, 李昊, 安春兰, 等. 融合能量熵编码和分类模型的牵引电机故障诊断[J]. 铁道学报, 2023, 45(9): 64-73.
ZHANG Kunpeng, LI Hao, AN Chunlan, et al. Fault diagnosis of traction motor based on fusion of energy entropy coding and classification model[J]. Journal of the China railway society, 2023, 45(9): 64-73.
刘蔚, 李万铨, 王明峤, 等. 复杂工况下的永磁同步电机典型绕组故障在线诊断[J]. 电工技术学报, 2024, 39(6): 1764-1776.
LIU Wei, LI Wanquan, WANG Mingqiao, et al. Online diagnosis of typical winding faults in permanent magnet synchronous motors under complex working conditions[J]. Transactions of China electrotechnical society, 2024, 39(6): 1764-1776.
刘琦昊, 许盛之, 俞梅, 等. 基于神经网络的非侵入式电机故障检测方法[J]. 科学技术与工程, 2022, 22(6): 2326-2333.
LIU Qihao, XU Shengzhi, YU Mei, et al. A non-intrusive motor fault detection method based on convolutional neural network[J]. Science technology and engineering, 2022, 22(6): 2326-2333.
HANG Jun, ZHANG Jianzhong, CHENG Ming, et al. Online interturn fault diagnosis of permanent magnet synchronous machine using zero-sequence components[J]. IEEE transactions on power electronics, 2015, 30(12): 6731-6741.
FANG Jie, SUN Yining, WANG Yibing, et al. Improved ZSVC-based fault detection technique for incipient stage inter-turn fault in PMSM[J]. IET electric power applications, 2019, 13(12): 2015-2026.
DAMIANOU A. Deep Gaussian processes and variational propagation of uncertainty[D]. Sheffield: University of Sheffield, 2015.
0
Views
14
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution