浏览全部资源
扫码关注微信
西南交通大学 电气工程学院,四川 成都 610031
Published:10 March 2024,
Received:17 December 2023,
Revised:02 February 2024,
扫 描 看 全 文
宋文胜, 张思慧, 叶存昕, 等. 数字孪生在轨道交通电力牵引系统应用的探讨与展望[J]. 机车电传动, 2024(2): 1-15.
SONG Wensheng, ZHANG Sihui, YE Cunxin, et al. Exploration and prospect on the application of digital twin in rail transit electric traction systems[J]. Electric drive for locomotives,2024(2): 1-15.
宋文胜, 张思慧, 叶存昕, 等. 数字孪生在轨道交通电力牵引系统应用的探讨与展望[J]. 机车电传动, 2024(2): 1-15. DOI:10.13890/j.issn.1000-128X.2024.02.001.
SONG Wensheng, ZHANG Sihui, YE Cunxin, et al. Exploration and prospect on the application of digital twin in rail transit electric traction systems[J]. Electric drive for locomotives,2024(2): 1-15. DOI:10.13890/j.issn.1000-128X.2024.02.001.
随着我国轨道交通电力牵引系统的快速发展与技术成熟,其可靠性评估与智能化监控技术逐渐引起关注,数字孪生是基于数据与机器学习对实际物理系统的虚拟刻画技术,可以实现对实际物理系统的行为特征模拟与参数监测,因此将数字孪生技术引入轨道交通电力牵引系统领域,可为其数字化、智能化监控与运维提供发展思路与技术手段。文章首先对数字孪生技术目前在电力牵引系统中的应用现状进行了综述,进而列举了电力牵引系统数字孪生构建过程中所需的关键技术及其发展情况——在电力牵引系统领域,数字孪生及其相关技术仍在理论研究阶段,只有针对部分子系统的探索性研究,尚未形成完善的系统建模与智能监控体系;最后,文章展望了数字孪生技术在电力牵引系统领域的工程化实现前景,探讨了其投入工程应用可能会面临的内部技术问题与外部客观挑战,旨在为后续技术研究与实践提供参考。
With the rapid development and technological maturity of China's rail transit electric traction system
its reliability assessment and intelligent monitoring technology have gradually attracted attention. Digital twin
as a virtual characterization technique for actual physical systems based on data and machine learning
can simulate the behavioral characteristics and monitor parameters of actual physical systems. Therefore
introducing digital twin technology into the rail transit electric traction system field can provide development ideas and technical means for the digital and intelligent monitoring and operation & maintenance of these systems. This paper first provides an overview of the current application of digital twin technology in electric traction systems
and then lists the key technologies required in the construction process of digital twin in electric traction systems and the development of these technologies. In the electric traction system field
digital twin and related technologies are still in the theoretical research stage
with only exploratory research on some subsystems available
and the complete system modeling and intelligent monitoring system has not yet formed. Finally
this paper looks forward to the engineering implementation prospects of digital twin technology in the electric traction system field
and discusses the internal technical problems and external objective challenges it may face when applied in engineering
for providing a reference for the subsequent technical research and practice.
数字孪生电力牵引系统系统建模人工智能数据处理
digital twinelectric traction systemsystem modelingartificial intelligencedata processing
王秋华, 刘贵, 吴强. 从标准化视角探究轨道交通装备技术的发展[J]. 机车电传动, 2020(5): 6-12.
WANG Qiuhua, LIU Gui, WU Qiang. Development exploring of rail transit equipment technology from perspective of standardization[J]. Electric drive for locomotives, 2020(5): 6-12.
吕刚. 直线电机在轨道交通中的应用与关键技术综述[J]. 中国电机工程学报, 2020, 40(17): 5665-5674.
LYU Gang. Review of the application and key technology in the linear motor for the rail transit[J]. Proceedings of the CSEE, 2020, 40(17): 5665-5674.
刘可安, 张义, 高连升, 等. 轨道交通牵引电传动系统及其组合试验标准解读[J]. 机车电传动, 2020(5): 1-5.
LIU Kean, ZHANG Yi, GAO Liansheng, et al. Interpretation of rail transit traction electric-driving system and its combined test standard[J]. Electric drive for locomotives, 2020(5): 1-5.
刘雄. 系列化中国标准地铁列车牵引系统设计[J]. 机车电传动, 2022(2): 55-66.
LIU Xiong. Design of traction system for serialized China standard metro train[J]. Electric drive for locomotives, 2022(2): 55-66.
黄硕, 吴命利. 电气化铁路牵引供电系统可靠性评价系统研究[J]. 机车电传动, 2020(1): 85-90.
HUANG Shuo, WU Mingli. Evaluation of reliability for traction power supply system of electric railways[J]. Electric drive for locomotives, 2020(1): 85-90.
佚名. “十四五”铁路科技创新规划[J]. 铁道技术监督, 2022, 50(1): 9-15.
Anon. Railway science and technology innovation plan in the 14th five-year plan[J]. Railway quality control, 2022, 50(1): 9-15.
姜悦礼, 史秀娈, 董明. 城轨车辆牵引系统的安全性设计与评估[J]. 机车电传动, 2013(1): 55-59.
JIANG Yueli, SHI Xiuluan, DONG Ming. Safety design and evalation on traction system of mass transit vehicles[J]. Electric drive for locomotives, 2013(1): 55-59.
董先鹏. 基于云-边协同的城轨牵引系统PHM技术研究[J]. 智慧轨道交通, 2023, 60(5): 1-5.
DONG Xianpeng. Research on PHM technology of urban rail traction system based on cloud-edge collaboration[J]. Smart rail transit, 2023, 60(5): 1-5.
钟麦英, 王钦, 彭涛, 等. 高速列车牵引传动系统运行状态监测技术综述[J]. 山东科技大学学报(自然科学版), 2023, 42(2): 88-97.
ZHONG Maiying, WANG Qin, PENG Tao, et al. Review of running status monitoring techniques for traction drive systems of high-speed trains[J]. Journal of Shandong university of science and technology(natural science), 2023, 42(2): 88-97.
陈哲, 张森, 王蕾, 等. 电力机车故障预测与健康管理系统总体方案研究[J]. 机车电传动, 2021(3): 125-131.
CHEN Zhe, ZHANG Sen, WANG Lei, et al. Research on the overall scheme of electric locomotive fault prognostics and health management system[J]. Electric drive for locomotives, 2021(3): 125-131.
王进峰, 问丛川, 花广如. 面向概念、技术与应用的数字孪生综述[J]. 中国工程机械学报, 2023, 21(2): 112-116.
WANG Jinfeng, WEN Congchuan, HUA Guangru. A survey of digital twins for concept, technology and application[J]. Chinese journal of construction machinery, 2023, 21(2): 112-116.
GITHENS G. Product lifecycle management: driving the next generation of lean thinking by Michael grieves[J]. Journal of product innovation management, 2007, 24(3): 278-280.
GRIEVES M. Virtually perfect: driving innovative and lean products through product lifecycle management[M]. Cocoa Beach: Space coast press, 2011.
刘洋, 尹彦宏, 杨斯泐, 等. 重载铁路牵引变电所数字孪生技术研究与应用[J]. 铁道运输与经济, 2023, 45(11): 106-114.
LIU Yang, YIN Yanhong, YANG Sile, et al. Research and application of digital twin technology in heavy-haul railway traction substations[J]. Railway transport and economy, 2023, 45(11): 106-114.
SESHADRI B R, KRISHNAMURTHY T. Structural health management of damaged aircraft structures using digital twin concept[C]//American Institute of Aeronautics and Astronautic. 25th AIAA/AHS Adaptive Structures Conference. Grapevine: American Institute of Aeronautics and Astronautic, 2017: 1-13.
金杰, 夏超, 肖士利, 等. 基于数字孪生的火箭起飞安全系统设计[J]. 计算机集成制造系统, 2019, 25(6): 1337-1347.
JIN Jie, XIA Chao, XIAO Shili, et al. Rocket launch safety system design scheme based on digital twins[J]. Computer integrated manufacturing systems, 2019, 25(6): 1337-1347.
ARRICHIELLO V, GUALENI P. Systems engineering and digital twin: a vision for the future of cruise ships design, production and operations[J]. International journal on interactive design and manufacturing, 2020, 14(1): 115-122.
陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9.
TAO Fei, ZHANG Meng, CHENG Jiangfeng, et al. Digital twin workshop: a new paradigm for future workshop[J]. Computer integrated manufacturing systems, 2017, 23(1): 1-9.
HEIDARI M, ALLAMEH E, DE VRIES B, et al. Smart-BIM virtual prototype implementation[J]. Automation in construction, 2014, 39: 134-144.
BOYLE J, ROBINSON J. BIM approach to a nuclear project: sellafield maintenance facility[J]. The structural engineer, 2013, 91(11): 84-87.
DE LANGE C. Meet your unborn child - before it's conceived[J]. New scientist, 2014, 222(2964): 8-9.
PENG Yingzhou, ZHAO Shuai, WANG Huai. A digital twin based estimation method for health indicators of DC-DC converters[J]. IEEE transactions on power electronics, 2021, 36(2): 2105-2118.
MILTON M, O C D L, GINN H L, et al. Controller-embeddable probabilistic real-time digital twins for power electronic converter diagnostics[J]. IEEE transactions on power electronics, 2020, 35(9): 9850-9864.
NEZIO G D, BENEDETTO M D, LIDOZZI A, et al. DC-DC boost converters parameters estimation based on digital twin[J]. IEEE transactions on industry applications, 2023, 59(5): 6232-6241.
DE LÓPEZ DIZ S, LÓPEZ R M, PEÑA E J B, et al. A real-time digital twin approach on three-phase power converters[C]//IEEE. 2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE). Helsinki: IEEE, 2023: 1-7.
NEZIO G D, DI BENEDETTO M, LIDOZZI A, et al. 3-phase boost rectifier condition health monitoring based on digital twin technique[C]//IEEE. 2023 International Conference on Clean Electrical Power. Terrasini: IEEE, 2023: 752-757.
ZHANG Shufeng, LIU Changan, SHI Yuntao, et al. Grid-forming inverter primary control using robust-residual-observer-based digital-twin model[J]. IEEE transactions on industrial informatics, 2024, 20(1): 638-648.
SHI Hang, XIAO Lan, WU Qunfang, et al. Digital twin approach for IGBT parameters identification of a three-phase DC-AC inverter[C]//IEEE. 2022 IEEE Transportation Electrification Conference and Expo. Haining: IEEE, 2022: 1-4.
MULINKA P, SAHOO S, KALALAS C, et al. Optimizing a digital twin for fault diagnosis in grid connected inverters-a Bayesian approach[C]//IEEE. 2022 IEEE Energy Conversion Congress and Exposition. Detroit: IEEE, 2022: 1-6.
SHARIDA A, KAMAL N F, ALNUWEIRI H, et al. Digital-twin-based diagnosis and tolerant control of T-type three-level rectifiers[J]. IEEE open journal of the industrial electronics society, 2023, 4: 230-241.
PAINULY M, RAJENDRAN S, JENA D. Condition monitoring of submodule capacitors in modular multilevel converter using digital twin[C]//IEEE. 2023 International Conference on Power, Instrumentation, Control and Computing. Thrissur: IEEE, 2023: 1-7.
XIONG Tianlong, LUO Min, YANG Chao, et al. MMC online thermal simulation and life prediction based on digital twin technology[C]//IEEE. 2022 IEEE International Conferences on Internet of Things and IEEE Green Computing & Communications and IEEE Cyber, Physical & Social Computing and IEEE Smart Data and IEEE Congress on Cybermatics. Espoo: IEEE, 2022: 631-635.
JAIN P, POON J, SINGH J P, et al. A digital twin approach for fault diagnosis in distributed photovoltaic systems[J]. IEEE transactions on power electronics, 2020, 35(1): 940-956.
LIMA A A D M, SOUZA F A A, CAMPELO MORAIS E E, et al. Proof of concept of fault detection and identification framework applied in power converter based on digital twins[C]//IEEE. 2022 Workshop on Communication Networks and Power Systems. Fortaleza: IEEE, 2022: 1-6.
李咏秋, 徐晋, 汪可友, 等. 小型固态变压器状态监测及单管开路故障诊断数字孪生方法[J]. 电力系统自动化, 2023, 47(5): 153-161.
LI Yongqiu, XU Jin, WANG Keyou, et al. Digital twin method for state monitoring and single-tube open-circuit fault diagnosis of small solid-state transformer[J]. Automation of electric power systems, 2023, 47(5): 153-161.
陈厚合, 杨政, 裴玮, 等. 风电并网系统数字孪生及故障态势辨识[J]. 电工电能新技术, 2022, 41(11): 43-58.
CHEN Houhe, YANG Zheng, PEI Wei, et al. Digital twin and fault situation identification of wind power integration system[J]. Advanced technology of electrical engineering and energy, 2022, 41(11): 43-58.
李磊, 贾真山. 数字孪生技术在光伏场站设备运行维护关键技术及其应用展望[J]. 中国设备工程, 2023(22): 15-17.
LI Lei, JIA Zhenshan. Key technologies and application prospects of digital twin technology in the operation and maintenance of photovoltaic station equipment[J]. China plant engineering, 2023(22): 15-17.
高仕斌, 刘帝洋, 韦晓广, 等. 基于数字孪生网络的牵引供电智能运维体系与应用架构[J]. 铁道学报, 2023, 45(12): 1-15.
GAO Shibin, LIU Diyang, WEI Xiaoguang, et al. System and application architectures of intelligent operation and maintenance for traction power supply based on digital twin network[J]. Journal of the China railway society, 2023, 45(12): 1-15.
杨一帆, 邹军, 石明明, 等. 数字孪生技术的研究现状分析[J]. 应用技术学报, 2022, 22(2): 176-184.
YANG Yifan, ZOU Jun, SHI Mingming, et al. Analysis of the research status of digital twin technology[J]. Journal of technology, 2022, 22(2): 176-184.
张颖伟, 高鸿瑞, 张鼎森, 等. 基于多智能体的数字孪生及其在工业中应用的综述[J]. 控制与决策, 2023, 38(8): 2168-2182.
ZHANG Yingwei, GAO Hongrui, ZHANG Dingsen, et al. A review of multi-agent-based digital twins and its application in industry[J]. Control and decision, 2023, 38(8): 2168-2182.
胡洋. 基于数字孪生技术的变压器状态监测研究与探索[J]. 电气化铁道, 2023, 34(1): 38-43.
HU Yang. Study on and exploration of transformer status monitoring based on digital twinning technology[J]. Electric railway, 2023, 34(1): 38-43.
ZHOU Wenhan, HAN Chuncheng, XUE Zhihua, et al. Application of digital twin system in power transformer fault detection[C]//IEEE. 2023 IEEE 6th International Electrical and Energy Conference. Hefei: IEEE, 2023: 2123-2127.
罗兵, 王婷婷, 石鑫, 等. 面向电力变压器PHM的数字孪生技术[J]. 南方电网技术, 2022, 16(12): 16-28.
LUO Bing, WANG Tingting, SHI Xin, et al. Digital twin technology for power transformer PHM[J]. Southern power system technology, 2022, 16(12): 16-28.
刘云鹏, 刘一瑾, 刘刚, 等. 电力变压器智能运维的数字孪生体构想[J]. 中国电机工程学报, 2023, 43(22): 8636-8651.
LIU Yunpeng, LIU Yijin, LIU Gang, et al. Digital twin conception of intelligent operation and maintenance of power transformer[J]. Proceedings of the CSEE, 2023, 43(22): 8636-8651.
ZHANG Jieliang, JIANG Libin, ZHANG Huanghui, et al. Research on on-line state monitoring method of voltage transformer based on digital twins[C]//IEEE. 2022 4th International Conference on Artificial Intelligence and Advanced Manufacturing. Hamburg: IEEE, 2022: 243-248.
ZHANG Sihui, SONG Wensheng, CAO Hu, et al. A digital-twin-based health status monitoring method for single-phase PWM rectifiers[J]. IEEE transactions on power electronics, 2023, 38(11): 14075-14087.
LI Heng, ZHU Zeyu, HE Peinan, et al. A thermal-aware digital twin model of permanent magnet synchronous motors (PMSM) based on BP neural networks[C]//IEEE. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications. Wuhan: IEEE, 2022: 1099-1106.
GUO Ze, YAN Shuai, XU Xiaoyu, et al. Twin-model based on model order reduction for rotating motors[J]. IEEE transactions on magnetics, 2022, 58(9): 1-4.
RASSÕLKIN A, RJABTŠIKOV V, VAIMANN T, et al. Digital twin of an electrical motor based on empirical performance model[C]//IEEE. 2020 Ⅺ International Conference on Electrical Power Drive Systems. St. Petersburg: IEEE, 2020: 1-4.
SONG Wensheng, ZOU Yuchao, MA Chenwei, et al. Digital twin modelling method of three-phase inverter-driven PMSM systems for parameter estimation[J]. IEEE transactions on power electronics, 2024, 39(2): 2360-2371.
SANTOS J F D, TSHOOMBE B K, SANTOS L H B, et al. Digital twin-based monitoring system of induction motors using IoT sensors and thermo-magnetic finite element analysis[J]. IEEE access, 2023, 11: 1682-1693.
CHEN Zhichao, LIANG Deliang, JIA Shaofeng, et al. Incipient interturn short-circuit fault diagnosis of permanent magnet synchronous motors based on the data-driven digital twin model[J]. IEEE journal of emerging and selected topics in power electronics, 2023, 11(3): 3514-3524.
HU Wenyang, WANG Tianyang, CHU Fulei. Novel ramanujan digital twin for motor periodic fault monitoring and detection[J]. IEEE transactions on industrial informatics, 2023, 19(12): 11564-11572.
YAO Kai, TANG Weijie, BI Xiaopeng, et al. An online monitoring scheme of DC-link capacitor's ESR and C for a boost PFC converter[J]. IEEE transactions on power electronics, 2016, 31(8): 5944-5951.
GENG Zhi, HAN Minxiao, ZHOU Guangyang. Switching signals based condition monitoring for submodule capacitors in modular multilevel converters[J]. IEEE transactions on circuits and systemsⅡ: express briefs, 2021, 68(6): 2017-2021.
AZER P, RODRIGUEZ R, GUO Jing, et al. Time-efficient integrated electrothermal model for a 60-kW three-phase bidirectional synchronous DC-DC converter[J]. IEEE transactions on industry applications, 2020, 56(1): 654-668.
SHAFAEI R, ORDONEZ M, SAKET M A. Three-dimensional frequency-dependent thermal model for planar transformers in LLC resonant converters[J]. IEEE transactions on power electronics, 2019, 34(5): 4641-4655.
NATEGH S, ZHANG Hui, WALLMARK O, et al. Transient thermal modeling and analysis of railway traction motors[J]. IEEE transactions on industrial electronics, 2019, 66(1): 79-89.
ZHANG Guidong, HE Yuanhang, YU S S, et al. Switching transition modeling of eGaN HEMT in power converters[J]. IEEE transactions on power electronics, 2023, 38(4): 4251-4256.
MA Zaojun, PEI Yunqing, WANG Laili, et al. An accurate analytical model of SiC MOSFETs for switching speed and switching loss calculation in high-voltage pulsed power supplies[J]. IEEE transactions on power electronics, 2023, 38(3): 3281-3297.
张梦婷, 杜建强, 罗计根, 等. 多目标优化特征选择研究综述[J]. 计算机工程与应用, 2023, 59(3): 23-32.
ZHANG Mengting, DU Jianqiang, LUO Jigen, et al. Research on feature selection of multi-objective optimization[J]. Computer engineering and applications, 2023, 59(3): 23-32.
陈锐智, 李析鸿, 陈思羽, 等. 基于EPSILON约束法的配电自动化设备多目标优化布点模型[J]. 电力系统保护与控制, 2021, 49(24): 51-58.
CHEN Ruizhi, LI Xihong, CHEN Siyu, et al. Multi-objective layout optimization model of distribution automation equipment based on the EPSILON constraint method[J]. Power system protection and control, 2021, 49(24): 51-58.
YANG Yu, HUANG Min, WANG Zhenyu, et al. Dual-information-based evolution and dual-selection strategy in evolutionary multiobjective optimization[J]. Soft computing, 2020, 24(5): 3193-3221.
李二超, 魏立森. 基于指标和自适应边界选择的高维多目标优化算法[J]. 控制与决策, 2022, 37(5): 1183-1194.
LI Erchao, WEI Lisen. An indicator-based many-objective evolutionary algorithm with adaptive boundary selection[J]. Control and decision, 2022, 37(5): 1183-1194.
徐凯, 杨飞凤, 涂永超, 等. 基于多粒子群协同的城轨列车速度曲线多目标优化[J]. 铁道学报, 2021, 43(2): 95-102.
XU Kai, YANG Feifeng, TU Yongchao, et al. Multi-objective optimization of speed profile of urban rail train based on multiple particle swarms co-evolutionary[J]. Journal of the China railway society, 2021, 43(2): 95-102.
蔡雨希, 何英杰, 陈涛, 等. 基于粒子群的三电平并网逆变器LCL滤波参数的高效精确设计方法[J]. 中国电机工程学报, 2020, 40(20): 6663-6673.
CAI Yuxi, HE Yingjie, CHEN Tao, et al. Efficient and accurate design method of LCL filter for three-level grid-connected inverter based on particle swarm optimization[J]. Proceedings of the CSEE, 2020, 40(20): 6663-6673.
苏玉刚, 陈龙, 吴学颖, 等. 基于遗传算法的SS型磁耦合WPT系统负载与互感识别方法[J]. 电工技术学报, 2018, 33(18): 4199-4206.
SU Yugang, CHEN Long, WU Xueying, et al. Load and mutual inductance identification method of SS-type magnetically-coupled WPT system based on genetic algorithm[J]. Transactions of China electrotechnical society, 2018, 33(18): 4199-4206.
杨少兵, 吴命利. 基于改进蚁群算法的客运专线电力负荷建模与参数辨识[J]. 中国电机工程学报, 2015, 35(7): 1578-1585.
YANG Shaobing, WU Mingli. Power load modeling and parameter identification based on improved ant colony algorithm for passenger lines[J]. Proceedings of the CSEE, 2015, 35(7): 1578-1585.
周国亮, 朱永利, 王桂兰, 等. 实时大数据处理技术在状态监测领域中的应用[J]. 电工技术学报, 2014, 29(增刊1): 432-437.
ZHOU Guoliang, ZHU Yongli, WANG Guilan, et al. Real-time big data processing technology application in the field of state monitoring[J]. Transactions of China electrotechnical society, 2014, 29(Suppl 1): 432-437.
梅飞, 梅军, 郑建勇, 等. 粒子群优化的KFCM及SVM诊断模型在断路器故障诊断中的应用[J]. 中国电机工程学报, 2013, 33(36): 134-141.
MEI Fei, MEI Jun, ZHENG Jianyong, et al. Application of particle swarm fused KFCM and classification model of SVM for fault diagnosis of circuit breaker[J]. Proceedings of the CSEE, 2013, 33(36): 134-141.
何鹏, 武思源, 罗超, 等. 基于ESMD的去噪算法在高速铁路沉降监测数据中的应用[J]. 测绘与空间地理信息, 2023, 46(5): 162-166.
HE Peng, WU Siyuan, LUO Chao, et al. Application of denoising algorithm based on ESMD in high-speed railway settlement monitoring data[J]. Geomatics & spatial information technology, 2023, 46(5): 162-166.
0
Views
52
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution