浏览全部资源
扫码关注微信
1.西南交通大学 先进驱动节能技术教育部工程研究中心,四川 成都 610031
2.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
Published:10 May 2024,
Received:20 July 2023,
Revised:15 January 2024,
扫 描 看 全 文
李强, 何沛恒, 郑杰, 等. 高温超导磁浮车水平曲线通过适应性研究[J]. 机车电传动, 2024(3): 90-98.
LI Qiang, HE Peiheng, ZHENG Jie, et al. Research on adaptability in horizontal curve negotiation of HTS maglev train[J]. Electric drive for locomotives,2024(3): 90-98.
李强, 何沛恒, 郑杰, 等. 高温超导磁浮车水平曲线通过适应性研究[J]. 机车电传动, 2024(3): 90-98. DOI:10.13890/j.issn.1000-128X.2024.01.243.
LI Qiang, HE Peiheng, ZHENG Jie, et al. Research on adaptability in horizontal curve negotiation of HTS maglev train[J]. Electric drive for locomotives,2024(3): 90-98. DOI:10.13890/j.issn.1000-128X.2024.01.243.
针对高温超导磁浮车刚性悬浮架曲线通过性差,文章提出了一种具有一定点头和摇头自由度的半解耦悬浮架结构,将高温超导的悬浮力和导向力简化为线性特性,建立了高温超导磁悬浮车辆的动力学理论模型,通过UM软件,在周期性激励的作用下,对理论模型进行了动力力学响应的仿真验证,证明了动力学理论模型的合理性。文章进一步利用UM软件分析了高温超导磁浮车的水平曲线通过性能,对比了悬浮架不同垂向扭转刚度、横向扭转刚度、空气弹簧垂向刚度对杜瓦的横向位移、垂向位移的影响。仿真结果表明,释放一定点头自由度和摇头自由度的半解耦悬浮架,能够更好地适应曲线轨道的线路弯曲和线路扭曲,减少了构架对悬浮系统的不利影响,充分发挥了高温超导钉扎效应的特性,提高了车辆的曲线通过性能,同时合理的空气弹簧刚度能够很好地抑制杜瓦的振动,使车辆运行平稳。最后提出了满足车辆安全运行的悬浮架方案,高温超导磁悬浮车辆曲线通过性能有明显的提升。
To enhance the curve negotiation performance of high-temperature superconducting (HTS) maglev trains equipped with a rigid levitation frame
this paper proposes a semi-decoupled levitation frame structure with specific degrees of freedom in both pitching and yawing. Initially
a dynamic theoretical model for HTS maglev trains was established
utilizing linear characteristics derived by simplifying the levitation and guidance forces stemming from HTS. This theoretical model was confirmed rational following the validation through dynamic response simulations conducted using UM software under periodic excitations. Subsequently
UM software was further utilized to assess the horizontal curve-passing performance of HTS maglev trains. Furthermore
comparisons were made regarding the impacts of different vertical and lateral torsional rigidities of levitation frames
along with varying air spring vertical rigidities on Dewar lateral and vertical displacements. The simulation results indicate improved adaptability in the proposed semi-decoupled levitation frame with specific pitching and rolling degrees of freedom on curved and twisted track configurations. By reducing the adverse effects of the framework on the levitation system and maximizing the pinning effect characteristics of HTS
this approach demonstrates effective in enhancing the trains' curve-passing performance. Additionally
an appropriate air spring rigidity is also found a contributor to effectively suppressing Dewar vibration
thus further ensuring the operational quality of trains. This paper conclusively proposes a levitation system solution that aligns with the safety requirements of train operation
displaying a strong potential to improve the curve-passing performance of HTS trains.
高温超导磁悬浮悬浮架水平曲线UM仿真
high-temperature superconducting (HTS) maglevlevitation framehorizontal curveUM simulation
沈志云, 张卫华. 中国高铁技术发展中的理论突破和试验突破[J]. 中国发明与专利, 2020, 17(10): 6-16.
SHEN Zhiyun, ZHANG Weihua. Breakthrough in theory development and in experiment methodology of high-speed rail technology in China[J]. China invention & patent, 2020, 17(10): 6-16.
王为, 王家素, 王素玉. 高温超导磁悬浮列车弯道曲线设计[C]//中国电工技术学会. 第十届超导学术交流会论文集. 北京: 中国电工技术学会, 2009: 162-165.
WANG Wei, WANG Jiasu, WANG Suyu. Curve design of high temperature superconducting maglev train[C]//China Electrotechnical Society. Proceedings of the 10th Superconducting Academic Exchange Conference. Beijing: China Electrotechnical Society, 2009: 162-165.
马光同. 高温超导磁悬浮三维理论模型及其数值计算研究[D]. 成都: 西南交通大学, 2009.
MA Guangtong. Three-dimensional model of high temperature superconducting magnetic levitation and associated numerical investigation[D]. Chengdu: Southwest Jiaotong University, 2009.
李海涛. 高温超导磁悬浮试验车振动特性研究[D]. 成都: 西南交通大学, 2016.
LI Haitao. Study on vibration characteristics of high temperature superconducting maglev test vehicle[D]. Chengdu: Southwest Jiaotong University, 2016.
LI Jipeng, LI Haitao, ZHENG Jun, et al. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field[J]. Journal of applied physics, 2017, 121(24): 243901.
LI Jipeng, ZHENG Jun, HUANG Huan, et al. Motion stability of the magnetic levitation and suspension with YBa2Cu3O7-x high-Tc superconducting bulks and NdFeB magnets[J]. Journal of applied physics, 2017, 122(15): 153902.
LI Haitao, DENG Zigang, JIN Li'an, et al. Lateral motion stability of high-temperature superconducting maglev systems derived from a nonlinear guidance force hysteretic model[J]. Superconductor science & technology, 2018, 31(7): 075010.
王为. 高温超导磁悬浮车静动态性能的研究及优化设计[D]. 成都: 西南交通大学, 2010.
WANG Wei. Static and dynamic study of high temperature superconducting maglev and its optimization and design methods[D]. Chengdu: Southwest Jiaotong University, 2010.
邓斌, 陈武, 邓自刚, 等. 新型高温超导磁浮车辆通过曲线时的运动学规律[J]. 城市轨道交通研究, 2019, 22(5): 34-38.
DENG Bin, CHEN Wu, DENG Zigang, et al. Kinematics law of high temperature superconducting maglev train in curve passing[J]. Urban mass transit, 2019, 22(5): 34-38.
陈武, 邓斌, 邓自刚, 等. 新型超导磁悬浮转向架设计及有限元分析[J]. 机车电传动, 2019(1): 56-60.
CHEN Wu, DENG Bin, DENG Zigang, et al. Design and finite element analysis of a new superconducting magnetic suspension bogie[J]. Electric drive for locomotives, 2019(1): 56-60.
白雪, 赵立峰, 蒋靖, 等. 超导磁悬浮转向架设计[J]. 液压气动与密封, 2011, 31(8): 13-15.
BAI Xue, ZHAO Lifeng, JIANG Jing, et al. Design of superconducting maglev bogie[J]. Hydraulics pneumatics & seals, 2011, 31(8): 13-15.
白雪. 高速超导磁悬浮列车的转向架设计[D]. 成都: 西南交通大学, 2011.
BAI Xue. Design of the high temperature superconducting maglev train' bogie[D]. Chengdu: Southwest Jiaotong University, 2011.
王洪帝. 基于悬浮力特性的高温超导磁悬浮车-桥系统垂向振动响应研究[D]. 成都: 西南交通大学, 2019.
WANG Hongdi. Vertical vibration response of vehicle-bridge coupled systems based on suspension force characteristic[D]. Chengdu: Southwest Jiaotong University, 2019.
李彦兴. 高温超导磁悬浮车/桥耦合振动仿真分析[D]. 成都: 西南交通大学, 2019.
LI Yanxing. Dynamics of vehicle/track coupled systems in high temperature superconducting maglev vehicle[D]. Chengdu: Southwest Jiaotong University, 2019.
张扬. 高温超导磁浮车/轨耦合振动试验系统设计与研究[D]. 成都: 西南交通大学, 2020.
ZHANG Yang. Design and study of high temperature superconducting maglev vehicle/rail coupled vibration test system[D]. Chengdu: Southwest Jiaotong University, 2020.
陈志贤, 池茂儒, 吴兴文, 等. 高温超导磁悬浮车辆曲线通过动态特性分析[J]. 机车电传动, 2020(4): 70-75.
CHEN Zhixian, CHI Maoru, WU Xingwen, et al. Analysis of dynamic characteristics of high temperature superconducting maglev vehicle in curve passing[J]. Electric drive for locomotives, 2020(4): 70-75.
谢毅, 寇峻瑜, 余浩伟. 高速磁浮最小曲线半径及缓和曲线长度研究[J]. 铁道工程学报, 2020, 37(4): 43-48.
XIE Yi, KOU Junyu, YU Haowei. Research on the minimum plane curve radius and transition curve length of high-speed maglev[J]. Journal of railway engineering society, 2020, 37(4): 43-48.
易思蓉. 高速磁悬浮线路最小平曲线半径初步研究[J]. 铁道标准设计, 2004(8): 23-26.
YI Sirong. A preliminary study over the minimum plane curve radius for high-speed maglev[J]. Railway standard design, 2004(8): 23-26.
0
Views
11
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution