浏览全部资源
扫码关注微信
1.中车株洲电力机车有限公司,湖南 株洲 412001
2.西南交通大学 电气工程学院,四川 成都 611756
Published:10 May 2024,
Received:06 November 2023,
Revised:22 December 2023,
扫 描 看 全 文
杨燕花, 陈珍宝, 曹晗, 等. 基于模糊C均值聚类的高铁动车组电缆终端局部放电识别[J]. 机车电传动, 2024(3): 156-163.
YANG Yanhua, CEHN Zhenbao, CAO Han, et al. Identification of partial discharges in cable terminals of high-speed EMUs based on fuzzy C-means clustering[J]. Electric drive for locomotives,2024(3): 156-163.
杨燕花, 陈珍宝, 曹晗, 等. 基于模糊C均值聚类的高铁动车组电缆终端局部放电识别[J]. 机车电传动, 2024(3): 156-163. DOI:10.13890/j.issn.1000-128X.2024.01.240.
YANG Yanhua, CEHN Zhenbao, CAO Han, et al. Identification of partial discharges in cable terminals of high-speed EMUs based on fuzzy C-means clustering[J]. Electric drive for locomotives,2024(3): 156-163. DOI:10.13890/j.issn.1000-128X.2024.01.240.
局部放电检测作为一种诊断车载电缆终端绝缘状态的有效手段,在列车实际运行环境中面临强干扰问题,为此文章提出了一种基于波形参数分析和模糊C均值聚类的车载电缆终端局放脉冲干扰分离策略。在实验室搭建了局部放电测试平台并采用高频电流法(HFCT)获取了电缆终端的局放信号和典型脉冲干扰信号,通过对脉冲单波进行包络处理,提取脉冲的3个参数作为特征向量,然后采用模糊C均值聚类方法对局放信号与脉冲干扰信号进行分离。试验结果表明,该方法能够有效地将局放信号与脉冲干扰信号分离,减小脉冲干扰信号对局部放电检测的影响,对提高局放手段评估车载电缆终端绝缘状态的准确性具有一定意义。
As an effective means to diagnose the insulation status of on-board cable terminals
partial discharge detection faces strong interference in the actual operating environment of trains. To address this issue
this paper proposed a strategy for separating partial discharge pulses of on-board cable terminals based on waveform parameter analysis and fuzzy C-means clustering. A partial discharge test platform was built in the laboratory
and high-frequency current transducers (HFCT) were used to acquire partial discharge signals and the typical pulse interference signals from cable terminals. By performing envelope analysis on individual pulses
three parameters of the pulses were extracted as the feature vectors. Subsequently
fuzzy C-means clustering was employed to separate the partial discharge signals from the pulse interference signals. The experimental results demonstrate that the proposed method can effectively separate partial discharge signals from pulse interference signals
reducing the impact of pulse interference on partial discharge detection
and is of some significance in improving the accuracy of assessing the insulation status of the on-board cable terminals through partial discharge means.
动车组电缆终端局部放电脉冲干扰模糊C均值聚类
EMUcable terminalpartial dischargepulse interferencefuzzy C-means clustering
孙传铭, 潘贵翔, 景所立, 等. 气隙对车载电缆终端电—热场影响仿真研究[J]. 高压电器, 2022, 58(4): 55-62.
SUN Chuanming, PAN Guixiang, JING Suoli, et al. Simulation study on effect of air gap on electric-thermal field of EMU cable terminal[J]. High voltage apparatus, 2022, 58(4): 55-62.
兰志军, 范永强, 岳永刚, 等. 基于纳秒脉冲电压的固体绝缘材料缺陷检测[J]. 高压电器, 2020, 56(3): 122-127.
LAN Zhijun, FAN Yongqiang, YUE Yonggang, et al. Defect detection of solid insulating material based on nanosecond pulse voltage[J]. High voltage apparatus, 2020, 56(3): 122-127.
刘维功, 王昊展, 时振堂, 等. 基于改进XGBoost算法的XLPE电缆局部放电模式识别研究[J]. 电测与仪表, 2022, 59(4): 98-106.
LIU Weigong, WANG Haozhan, SHI Zhentang, et al. Research on partial discharge pattern recognition of XLPE cable based on improved XGBoost algorithm[J]. Electrical measurement & instrumentation, 2022, 59(4): 98-106.
胡长猛, 程林, 王辉, 等. 含典型缺陷的变压器套管局部放电检测试验研究[J]. 电瓷避雷器, 2021(2): 107-115.
HU Changmeng, CHENG Lin, WANG Hui, et al. Investigation of partial discharge detection of transformer bushing with typical defects[J]. Insulators and surge arresters, 2021(2): 107-115.
郑艳艳, 朱永利, 高佳程. 基于SSA与ICA的变压器局部放电混合信号分离[J]. 电测与仪表, 2020, 57(22): 84-90.
ZHENG Yanyan, ZHU Yongli, GAO Jiacheng. Hybrid signal separation of transformer partial discharge based on SSA and ICA[J]. Electrical measurement & instrumentation, 2020, 57(22): 84-90.
唐志国, 王彩雄, 陈金祥, 等. 局部放电UHF脉冲干扰的排除与信号的聚类分析[J]. 高电压技术, 2009, 35(5): 1026-1031.
TANG Zhiguo, WANG Caixiong, CHEN Jinxiang, et al. Pulse interferences elimination and classification of on-line UHF PD signals[J]. High voltage engineering, 2009, 35(5): 1026-1031.
周力行, 李卫国, 陈允平. 基于混沌控制的局部放电周期性脉冲干扰抑制方法[J]. 电力系统自动化, 2004, 28(15): 90-94.
ZHOU Lixing, LI Weiguo, CHEN Yunping. Suppressing the periodic impulse in partial discharge detection based on chaotic control[J]. Automation of electric power systems, 2004, 28(15): 90-94.
GUAN Hong, SHAO Yuying, QIAN Yong, et al. Method for suppressing random pulse interference of partial discharge based on fuzzy clustering[C]//IEEE. 2012 Power Engineering and Automation Conference. Wuhan: IEEE, 2012: 1-4.
邵震宇, 黄成军, 肖燕, 等. 用PSO算法训练神经网络抑制发电机局放随机脉冲干扰[J]. 电力系统自动化, 2005, 29(11): 49-52.
SHAO Zhenyu, HUANG Chengjun, XIAO Yan, et al. Application of PSO based neural network in suppression of stochastic pulse interference for partial discharge monitoring in large generators[J]. Automation of electric power systems, 2005, 29(11): 49-52.
邓先钦, 吴辉, 周徐达, 等. 交流滤波器避雷器离线带电检测方案设计[J]. 电瓷避雷器, 2020(2): 81-85.
DENG Xianqin, WU Hui, ZHOU Xuda, et al. Design of off-line live detection for AC filter arrester[J]. Insulators and surge arresters, 2020(2): 81-85.
LAI K X, PHUNG B T, BLACKBURN T R, et al. Separation of corona noise from on-line partial discharge monitoring of power cables[C]//IEEE. 2008 International Conference on Condition Monitoring and Diagnosis. Beijing: IEEE, 2008: 1270-1274.
祝诗平. 传感器与检测技术[M]. 北京: 中国林业出版社, 北京大学出版社, 2006.
ZHU Shiping. Sensor and detection technology[M]. Beijing: China Forestry Publishing House, Peking University Press, 2006.
DASGUPTA H, PANDEY P C, NATARAJ K S. Epoch detection using Hilbert envelope for glottal excitation enhancement and maximum-sum subarray for epoch marking[J]. IEEE journal of selected topics in signal processing, 2020, 14(2): 461-471.
XU Lang, CHATTERTON S, PENNACCHI P. A rolling element bearing diagnosis method based on singular value decomposition and squared envelope spectrum[C]//IEEE. 2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO). Guangzhou: IEEE, 2021: 47-51.
李文华, 姜惠, 赵正元, 等. 基于波形匹配端点延拓法优化的经验模态分解算法在铁路继电器参数降噪上的应用[J]. 电工技术学报, 2022, 37(10): 2656-2664.
LI Wenhua, JIANG Hui, ZHAO Zhengyuan, et al. Application of empirical mode decomposition algorithm based on waveform matching endpoint continuation method in noise reduction of railway relay parameters[J]. Transactions of China electrotechnical society, 2022, 37(10): 2656-2664.
武英杰, 辛红伟, 王建国, 等. 基于VMD滤波和极值点包络阶次的滚动轴承故障诊断[J]. 振动与冲击, 2018, 37(14): 102-107.
WU Yingjie, XIN Hongwei, WANG Jianguo, et al. Rolling bearing fault diagnosis based on the variational mode decomposition filtering and extreme point envelope order[J]. Journal of vibration and shock, 2018, 37(14): 102-107.
NAYAK J, NAIK B, BEHERA H S. Fuzzy C-Means (FCM) clustering algorithm: a decade review from 2000 to 2014[C]//Jain L C, Behera H S, Mandal J K, et al. Computational intelligence in data mining-volume 2. New Delhi: Springer, 2015.
郑思达, 梁琪琳, 彭鑫霞, 等. 基于模糊聚类的异常用电行为识别研究[J]. 电测与仪表, 2020, 57(19): 40-44.
ZHENG Sida, LIANG Qilin, PENG Xinxia, et al. Research on abnormal power consumption behavior identification based on fuzzy clustering[J]. Electrical measurement & instrumentation, 2020, 57(19): 40-44.
HU Fankui, CHEN Haibing, WANG Xiaofei. An intuitionistic kernel-based fuzzy C-Means clustering algorithm with local information for power equipment image segmentation[J]. IEEE access, 2020, 8: 4500-4514.
谭风雷, 朱超, 徐刚, 等. 基于解耦分析和欧式距离的特高压变压器顶层油温预测方法[J]. 高电压技术, 2022, 48(1): 298-306.
TAN Fenglei, ZHU Chao, XU Gang, et al. Method of UHV transformer top oil temperature forecasting based on decoupling analysis and euclidean distance[J]. High voltage engineering, 2022, 48(1): 298-306.
LI Xuechen, LUO Suhuai, LI Jiaming. Liver segmentation from CT image using fuzzy clustering and level set[J]. Journal of signal and information processing, 2013, 4: 36-42.
ALSMADI M K. A hybrid firefly algorithm with fuzzy-C mean algorithm for MRI brain segmentation[J]. American journal of applied sciences, 2014, 11(9): 1676-1691.
CHOWDHARY C L, ACHARJYA D P. Breast cancer detection using intuitionistic fuzzy histogram hyperbolization and possibilitic fuzzy c-mean clustering algorithms with texture feature based classification on mammography images[C]//Association for Computing Machinery. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. Bikaner: Association for Computing Machinery, 2016.
SHANKER R, BHATTACHARYA M. Brain tumor segmentation of normal and pathological tissues using K-mean clustering with fuzzy C-mean clustering[C]//Springe. European congress on computational methods in applied sciences and engineering. Porto: Springer, 2017: 286-296.
POLOMČIĆ D, GLIGORIĆ Z, BAJIĆ D, et al. A hybrid model for forecasting groundwater levels based on fuzzy C-mean clustering and singular spectrum analysis[J]. Water, 2017, 9(7): 541.
CHOUBIN B, SOLAIMANI K, ROSHAN M H, et al. Watershed classification by remote sensing indices: a fuzzy c-means clustering approach[J]. Journal of mountain science, 2017, 14(10): 2053-2063.
KAVITHA P, PRABAKARAN S. A novel hybrid segmentation method with particle swarm optimization and fuzzy c-mean based on partitioning the image for detecting lung cancer[EB/OL]. (2019-09-20) [2023-08-29]. https://www.preprints.org/manuscript/201906.0195/v1https://www.preprints.org/manuscript/201906.0195/v1.
KUMAR A, BHADAURIA H S, SINGH A. Semi-supervised OTSU based hyperbolic tangent Gaussian kernel fuzzy C-mean clustering for dental radiographs segmentation[J]. Multimedia tools and applications, 2020, 79(3): 2745-2768.
ARIF M, WANG Guojun, BALAS V E, et al. Band segmentation and detection of DNA by using fast fuzzy c-mean and neuro adaptive fuzzy inference system[C]//Springer. Smart City and Informatization: 7th International Conference. Singapore: Springer, 2019: 49-59.
CHOWDHARY C L, MITTAL M, PERUMAL K, et al. An efficient segmentation and classification system in medical images using intuitionist possibilistic fuzzy C-mean clustering and fuzzy SVM algorithm[J]. Sensors, 2020, 20(14): 3903.
0
Views
9
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution