浏览全部资源
扫码关注微信
1.西南交通大学 先进驱动节能技术教育部工程研究中心,四川 成都 610031
2.西南交通大学 轨道交通运载系统全国重点实验室,四川 成都 610031
Published:10 January 2024,
Received:20 June 2023,
扫 描 看 全 文
郑杰, 何沛恒, 李强, 等. 轨道不平顺激励对高温超导磁浮列车电机悬挂的影响[J]. 机车电传动, 2024(1): 101-108.
ZHENG Jie, HE Peiheng, LI Qiang, et al. Impact of track irregularities on the motor suspension of high-temperature superconducting maglev trains[J]. Electric drive for locomotives,2024(1): 101-108.
郑杰, 何沛恒, 李强, 等. 轨道不平顺激励对高温超导磁浮列车电机悬挂的影响[J]. 机车电传动, 2024(1): 101-108. DOI:10.13890/j.issn.1000-128X.2024.01.136.
ZHENG Jie, HE Peiheng, LI Qiang, et al. Impact of track irregularities on the motor suspension of high-temperature superconducting maglev trains[J]. Electric drive for locomotives,2024(1): 101-108. DOI:10.13890/j.issn.1000-128X.2024.01.136.
高温超导磁浮列车在运行过程中受到轨道随机不平顺激励的影响,车体和磁浮架的振动会传递至直线电机动子而导致气隙变化,变化后的电磁力反作用于电机悬挂系统,进而影响磁浮架和车体振动。二者的耦合振动一定程度上会影响高温超导磁浮列车的安全运行。为了减少轨道随机不平顺激励对电机悬挂系统的影响,文章建立了多刚体动力学理论模型,并在周期性激励的作用下,对理论模型进行了动力学响应的仿真验证,证明了动力学理论模型的正确性。进一步地,在UM软件中以电机法向力和轨道随机不平顺作为外部激励,对高温超导磁浮列车动力学模型进行仿真,研究了电机悬挂系统的垂向刚度对直线电机气隙、车体和悬浮架振动、列车运行平稳性等参数的影响并对该刚度值进行了合理优化。结果表明:增大直线电机悬挂系统的垂向刚度能一定程度提高车体平稳性;同时增大垂向刚度能一定程度上减小气隙的变化和电机的振动,从而降低和悬浮架的耦合作用。研究结果是在特定的结构参数、负载条件下的仿真分析结果,可为高温超导磁浮列车动力学分析提供一定参考作用。
In the operation
high-temperature superconducting maglev trains are susceptible to the impact of random track irregularities. These irregularities cause vibrations of the carbody and maglev frame
which are transferred to the dynamic components of the linear motor
resulting changes in the air gap. The changed electromagnetic force reacts against the motor suspension system
causing further vibrations of the maglev frame and carbody. The coupled vibrations of both components influence the safe operation of high-temperature superconducting maglev trains to some extent. To mitigate the influence of random track irregularities on the motor suspension system
a multi-rigid-body dynamic theory model was established in this study. Through simulation verification of the dynamic response under periodic excitations
the correctness of the dynamic theory model was confirmed. Furthermore
within UM software
with the linear motor normal force and random track irregularities as external excitations
a simulation of the dynamics model of the high-temperature superconducting maglev train was conducted. The influence of the vertical stiffness of the motor suspension system on the air gap of the linear motor
the vibration of the carbody and suspension frame
and the train ride comfort was studied
and the optimal value for this stiffness was determined. The results show that increasing the vertical stiffness of the linear motor suspension system to a certain extent can improve the stability of the carbody. Additionally
increasing the vertical stiffness can reduce the variation in the air gap and motor vibration to a certain extent
thus decreasing the coupling effect with the suspension frame. The results obtained in this study are based on simulation analysis under specific structural parameters and load conditions
and they can provide valuable insights for the dynamic analysis of high-temperature superconducting maglev trains.
轨道随机不平顺法向力高温超导磁浮列车直线电机悬挂UM
random track irregularitiesnormal forcehigh-temperature superconducting maglev trainlinear motor suspensionUM
邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474.
DENG Zigang, LIU Zongxin, LI Haitao, et al. Development status and prospect of maglev train[J]. Journal of southwest jiaotong university, 2022, 57(3): 455-474.
吕刚. 直线电机在轨道交通中的应用与关键技术综述[J]. 中国电机工程学报, 2020, 40(17): 5665-5674.
LYU Gang. Review of the application and key technology in the linear motor for the rail transit[J]. Proceedings of the CSEE, 2020, 40(17): 5665-5674.
王潇. 直线电机地铁三维空间耦合动力学仿真与线形参数研究[D]. 北京: 北京交通大学, 2018.
WANG Xiao. Three-dimensional space coupled dynamics simulation and linear parameter study of linear motor subways[D]. Beijing: Beijing Jiaotong University, 2018.
李海涛. 磁轨不平顺激扰下高温超导钉扎高速磁浮车-轨耦合动力学研究[D]. 成都: 西南交通大学, 2021.
LI Haitao. Research on the coupled dynamics of high-temperature superconducting pinning high-speed maglev train and track under magnetic rail irregular excitations[D]. Chengdu: Southwest Jiaotong University, 2021.
WANG Hongdi, DENG Zigang, MA Shunshun, et al. Dynamic simulation of the HTS maglev vehicle-bridge coupled system based on levitation force experiment[J]. IEEE transactions on applied superconductivity, 2019, 29(5): 1-6.
陈志贤, 池茂儒, 吴兴文, 等. 高温超导磁悬浮车辆曲线通过动态特性分析[J]. 机车电传动, 2020(4): 70-75.
CHEN Zhixian, CHI Maoru, WU Xingwen, et al. Analysis of dynamic characteristics of high temperature superconducting maglev vehicle in curve passing[J]. Electric drive for locomotives, 2020(4): 70-75.
夏景辉. 直线电机轮轨交通气隙及轨道平顺性对系统动力响应影响研究[D]. 北京: 北京交通大学, 2011.
XIA Jinghui. Research on the impact of air gap and track smoothness in linear motor wheel-rail transportation on system dynamic response[D]. Beijing: Beijing Jiaotong University, 2011.
冯雅薇, 魏庆朝, 时瑾. 直线电机地铁车辆-轨道垂向耦合动力学模型[J]. 北京交通大学学报, 2006(1): 51-54.
FENG Yawei, WEI Qingchao, SHI Jin. Vertical coupled dynamics model of linear motor subway vehicles and tracks[J]. Journal of Beijing jiaotong university, 2006(1): 51-54.
顾戌华. 直线电机列车—桥梁系统动力响应与车辆走行性研究[D]. 北京: 北京交通大学, 2007.
GU Xuhua. Research on the dynamic response of linear motor trains and bridge systems and vehicle running behavior[D]. Beijing: Beijing Jiaotong University, 2007.
REN S, ROMEIJN A, KLAP K. Dynamic simulation of the maglev vehicle/guideway system[J]. Journal of bridge engineering, 2010, 15(3): 269-278.
赵春发. 磁悬浮车辆系统动力学研究[D]. 成都: 西南交通大学, 2002.
ZHAO Chunfa. Maglev vehicle system dynamics[D]. Chengdu: Southwest Jiaotong University, 2002.
罗英昆, 赵春发, 梁鑫, 等. 小半径竖曲线上磁浮车辆空气弹簧动态响应分析[J]. 振动与冲击, 2020, 39(17): 99-105.
LUO Yingkun, ZHAO Chunfa, LIANG Xin, et al. Dynamic responses of air-spring suspension of a maglev vehicle negotiating a small-radius vertical curved track[J]. Journal of vibration and shock, 2020, 39(17): 99-105.
YAN Z, LI G, LUO J, et al. Vibration control of superconducting electro-dynamic suspension train with electromagnetic and sky-hook damping methods[J]. Vehicle system dynamics, 2022, 60(10): 3375-3397.
WATANABE K, YOSHIOKA H, WATANABE E, et al. A study of the vibration control system for a superconducting maglev vehicle[C]//The Japan Society of Mechanical Engineers. The Proceedings of the International Conference on Motion and Vibration Control. Saitama: The Japan Society of Mechanical Engineers, 2002: 907-912.
陈果, 翟婉明. 铁路轨道不平顺随机过程的数值模拟[J]. 西南交通大学学报, 1999(2): 13-17.
CHEN Guo, ZHAI Wanming. Numerical simulation of railway track irregularity random process[J]. Journal of southwest jiaotong university, 1999(2): 13-17.
0
Views
10
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution