浏览全部资源
扫码关注微信
西南交通大学 机械工程学院,四川 成都 610031
Published:10 January 2024,
Received:21 November 2023,
扫 描 看 全 文
杨岗, 吕琨, 孔国伟, 等. 环境温度对地铁刚性接触网弹性与弓网受流质量影响研究[J]. 机车电传动, 2024(1): 152-165.
YANG Gang, LYU Kun, KONG Guowei, et al. Influence of environmental temperature on the elasticity of rigid catenary and pantograph-catenary current collection quality of subway lines[J]. Electric drive for locomotives,2024(1): 152-165.
杨岗, 吕琨, 孔国伟, 等. 环境温度对地铁刚性接触网弹性与弓网受流质量影响研究[J]. 机车电传动, 2024(1): 152-165. DOI:10.13890/j.issn.1000-128X.2024.01.129.
YANG Gang, LYU Kun, KONG Guowei, et al. Influence of environmental temperature on the elasticity of rigid catenary and pantograph-catenary current collection quality of subway lines[J]. Electric drive for locomotives,2024(1): 152-165. DOI:10.13890/j.issn.1000-128X.2024.01.129.
近年来全国地铁大面积发生弓网异常磨耗事件,特别是冬季异常磨耗已然成为常态,2022年全国有30余条地铁线路出现此现象,经济损失达数亿元。为了研究环境温度对弓网关系的影响,文章首先建立了某地铁线路刚性接触网有限元模型,计算得到环境温度
<math id="M1"><mo>-</mo><mn mathvariant="normal">20</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63290604&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63290618&type=
5.84200001
~20 ℃下接触网刚度曲线,并分析了环境温度对接触网刚度影响规律;然后,构建地铁变刚度弓网耦合动力学模型,依据EN 50119等标准验证了其准确性,并计算了环境温度(
<math id="M2"><mo>-</mo><mn mathvariant="normal">20</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63290604&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63290618&type=
5.84200001
~20 ℃)、列车运行速度(40~90 km/h)、受电弓静抬升力(70~160 N)、定位线夹卡滞工况下的弓网接触力,着重分析了环境温度对弓网接触力、弓网受流质量的影响规律。结果表明:环境温度与弓网接触力、受流质量具有强正相关性,当环境温度低于0 ℃时,弓网受流指标将严重恶化;线夹卡滞会对弓网接触力、受流质量带来恶劣影响,而且行车速度越高影响越大。
In recent years
there have been large-scale incidents of abnormal wear on subway pantographs and catenaries across China
especially in winter. In 2022
more than 30 subway lines nationwide encountered this issue
resulting in economic losses amounting to hundreds of millions of yuan. In order to study the influence of environmental temperature on the pantograph-catenary relationship
a finite element model of the rigid catenary of a subway line was established. The stiffness curve of the catenary was calculated at ambient temperatures of -20~20 °C. The pattern of influence of environmental temperature on the stiffness of the catenary was analyzed. Then
a dynamic model of subway pantograph-catenary coupling with variable stiffness was established
and its accuracy was verified according to EN 50119 and other standards. The pantograph-catenary contact force was calculated under the conditions of ambient temperatures of -20~20 °C
train running speed of 40~90 km/h
pantograph static lifting force of 70~160 N
and stuck positioning clamps. Furthermore
the influence of environmental temperature on the pantograph-catenary contact force and the pantograph-catenary current collection quality was analyzed. The results show that there is a strong positive correlation between environmental temperature and the pantograph-catenary contact force and current collection quality. When the environmental temperature is below 0 °C
the pantograph-catenary current collection index will seriously deteriorate; stuck wire clamps will have a negative impact on the pantograph-catenary contact force and current collection quality
and the higher the train running speed
the greater the impact will be.
刚性接触网环境温度接触网刚度曲线弓网接触力受流质量弓网耦合动力学
rigid catenaryenvironmental temperaturestiffness curve of catenarypantograph-catenary contact forcecurrent collection qualitypantograph-catenary coupling dynamics
张士宇, 杨岗, 吕琨, 等. 地铁车辆受电弓异常磨耗研究[J]. 机车电传动, 2023(4): 124-130.
ZHANG Shiyu, YANG Gang, LYU Kun, et al. Study on abnormal abrasion of metro pantograph[J]. Electric drive for locomotives, 2023(4): 124-130.
唐志强, 朱佳栋. 城市轨道交通架空刚性悬挂接触网弓网磨耗及改进措施[J]. 城市轨道交通研究, 2021, 24(增刊1): 108-112.
TANG Zhiqiang, ZHU Jiadong. Pantograph catenary wear of urban rail transit overhead rigid catenary and improvement measures[J]. Urban mass transit, 2021, 24(Suppl 1): 108-112.
梅桂明, 张卫华. 刚性悬挂接触网动力学研究[J]. 铁道学报, 2003, 25(2): 24-29.
MEI Guiming, ZHANG Weihua. Study on dynamics of rigid suspension catenary[J]. Journal of the China railway society, 2003, 25(2): 24-29.
ZHANG Weihua, LIU Yi, MEI Guiming. Evaluation of the coupled dynamical response of a pantograph-catenary system: contact force and stresses[J]. Vehicle system dynamics, 2006, 44(8): 645-658.
吕青松, 王世轩, 周宁, 等. 基于变刚度弹簧模型的弓网动力学分析[J]. 电气化铁道, 2014(5): 25-29.
LYU Qingsong, WANG Shixuan, ZHOU Ning, et al. Dynamic analysis of pantograph based on variable stiffness spring model[J]. Electric railway, 2014(5): 25-29.
关金发, 吴积钦. 受电弓与刚性接触网动力耦合方程的数值解[J]. 铁道科学与工程学报, 2016, 13(2): 362-368.
GUAN Jinfa, WU Jiqin. Dynamic coupling equations between pantograph and overhead rigid conductor rail by using numerical method[J]. Journal of railway science and engineering, 2016, 13(2): 362-368.
孙成. 基于新型吊弦的接触网刚度分布及弓网间接触压力变化的研究[D]. 北京: 北京交通大学, 2019.
SUN Cheng. Study on stiffness distribution of catenary and pantograph-catenary contact force based on new droppers[D]. Beijing: Beijing Jiaotong University, 2019.
李鑫. 接触网刚度变化对弓网接触力影响的研究[D]. 北京: 北京交通大学, 2020.
LI Xin. Study on influence of catenary stiffness change on pantograph-catenary contact force[D]. Beijing: Beijing Jiaotong University, 2020.
刘煜铖, 徐鸿燕, 单翀皞. 刚性悬挂汇流排卡滞热应力分析[J]. 铁道机车车辆, 2022, 42(6): 119-123.
LIU Yucheng, XU Hongyan, SHAN Chonghao. Thermal stress analysis of the stuck rigid suspension catenary[J]. Railway locomotive & car, 2022, 42(6): 119-123.
LI Kunpeng, FENG Chao, JIN Shoujie, et al. Effect of ambient temperature on catenary system[C]//IOP. 2020 4th International Conference on Energy Material, Chemical Engineering and Mining Engineering. Qingdao: IPO, 2020.
ZHAO Yaobing, PENG Jian, ZHAO Yueyu, et al. Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonances of suspended cables[J]. Nonlinear dynamics, 2017, 89(4): 2815-2827.
陈鼎, 陈振华. 铝合金在低温下的力学性能[J]. 宇航材料工艺, 2000, 30(4): 1-7.
CHEN Ding, CHEN Zhenhua. Mechanical properties of pure aluminum alloys at cryogenic temperatures[J]. Aerospace materials & technology, 2000, 30(4): 1-7.
赵雪绮. 超低温环境下预应力混凝土梁结构性能研究[D]. 天津: 天津大学, 2018.
ZHAO Xueqi. Research on structural performance of prestressed concrete beams at low temperatures[D]. Tianjin: Tianjin University, 2018.
刘钊, 万德田, 包亦望, 等. 高温和超高温极端环境下陶瓷管材弹性模量评价新技术[J]. 现代技术陶瓷, 2016, 37(2): 107-118.
LIU Zhao, WAN Detian, BAO Yiwang, et al. New evaluation methods for determining the elastic modulus of ceramic tubes at high and ultrahigh temperatures[J]. Advanced ceramics, 2016, 37(2): 107-118.
CENELEC. Railway applications - fixed installations - electric traction overhead contact lines: EN 50119: 2009[S]. Brussels: CENELEC, 2009.
舒斯龙, 邓桂棠, 谢小春. 地铁120 km/h刚性接触网局部磨耗分析及预防措施[J]. 都市快轨交通, 2019, 32(6): 123-128.
SHU Silong, DENG Guitang, XIE Xiaochun. Local wear analysis and preventive measures for rigid catenary when the metro train runs at the speed of 120 km/h[J]. Urban rapid rail transit, 2019, 32(6): 123-128.
杨岗, 李芾. 基于LQR的高速受电弓最优半主动控制研究[J]. 铁道学报, 2011, 33(11): 34-40.
YANG Gang, LI Fu. Semi-active control for high-speed pantograph based on the optimal LQR regulator[J]. Journal of the China railway society, 2011, 33(11): 34-40.
0
Views
26
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution