浏览全部资源
扫码关注微信
1.中车长春轨道客车股份有限公司 磁浮研究所,吉林 长春 130062
2.上海交通大学 电气工程系,上海 200240
Published:10 May 2024,
Received:23 July 2023,
Revised:08 January 2024,
扫 描 看 全 文
谭富星, 李凯, 于淼, 等. 超导电动悬浮试验线悬浮系统设计及验证[J]. 机车电传动, 2024(3): 13-18.
TAN Fuxing, LI Kai, YU Miao, et al. Design and verification of levitation system for superconducting electrodynamic suspension test line[J].Electric drive for locomotives,2024(3): 13-18.
谭富星, 李凯, 于淼, 等. 超导电动悬浮试验线悬浮系统设计及验证[J]. 机车电传动, 2024(3): 13-18. DOI:10.13890/j.issn.1000-128X.2024.01.125.
TAN Fuxing, LI Kai, YU Miao, et al. Design and verification of levitation system for superconducting electrodynamic suspension test line[J].Electric drive for locomotives,2024(3): 13-18. DOI:10.13890/j.issn.1000-128X.2024.01.125.
超导电动悬浮是一种面向高速、超高速运行的磁浮交通制式。在超导电动悬浮系统线圈结构和电磁参数设计确定后,其悬浮力和导向力的变化规律无法通过车载控制器进行调整,因此线圈的尺寸设计至关重要。文章从工程角度出发阐述分析可行的电动悬浮系统设计方法:基于动态电路方程和虚功原理,计算某一参数条件下的平均悬浮力峰值,结合制造工艺与成本获得悬浮线圈结构参数;随后计算该尺寸“8”字形线圈尺寸与超导磁极的作用关系,获得车重与平均悬浮力相等时的偏移量,即悬浮系统稳态工作的平衡位置,并得到“8”字形线圈尺寸对平均悬浮力的峰值影响规律:在其他变量保持不变时,半线圈高度对平均悬浮力峰值具有极大值点,绕组宽度和线圈厚度对平均悬浮力峰值分别为单调增函数;最后,依托中车长春轨道客车股份有限公司超导电动试验线进行了悬浮系统测试试验,实测车辆垂向平均高度相比计算获得的平衡位置相差0.56 mm,校核了该设计方法的准确性和有效性。
Superconducting electrodynamic suspension is a maglev transportation system for high-speed and ultra-high-speed operation. After the design of the coil structure and electromagnetic parameters of the superconducting electrodynamic suspension system is finalized
the change patterns of the levitation force and guiding force cannot be adjusted by the onboard controller. Therefore
the size of the coil is very important. From an engineering perspective
the feasible design method for the electrodynamic suspension system was expounded and analyzed in this study. Firstly
based on the dynamic circuit equation and virtual work principle
the peak value of the average levitation force under a certain parameter condition was calculated. And the structure parameters of the levitation coil were obtained by conducting a process and cost analysis. Then
the relationship between the size of the "8" shaped coil and the superconducting magnetic poles was calculated
and the vertical offset when the vehicle weight was equal to the average levitation force was obtained
which was the steady-state working balance position of the levitation system. In addition
the influence pattern of the "8" shaped coil size on the peak value of average levitation force was determined: the half coil height exhibited an extremely large point for the peak value of the average levitation force
and the winding width and coil thickness were monotonic increasing on the function of the peak value of the average levitation force respectively
if other variables remain unchanged. Finally
the levitation system test was carried out on the superconducting electrodynamic suspension test line of CRRC Changchun Railway Vehicles Co.
Ltd.. The test results show that the difference between the measured vertical average height of the vehicle and the calculated balance position is 0.56 mm
which have checked the accuracy and effectiveness of the design method for the levitation system.
电动悬浮悬浮系统设计方法试验线
electrodynamic suspensionlevitation systemdesign methodtest line
刘士苋, 王磊, 王路忠, 等. 电动悬浮列车及车载超导磁体研究综述[J]. 西南交通大学学报, 2023, 58(4): 734-753.
LIU Shixian, WANG Lei, WANG Luzhong, et al. Review on electrodynamic suspension trains and on-board superconducting magnets[J]. Journal of southwest jiaotong university, 2023, 58(4): 734-753.
魏庆朝, 孔永健. 磁悬浮铁路系统与技术[M]. 北京: 中国科学技术出版社, 2003.
WEI Qingchao, KONG Yongjian. System and technology for maglev transit[M]. Beijing: China Science and Technology Press, 2003.
马光同, 杨文姣, 王志涛, 等. 超导磁浮交通研究进展[J]. 华南理工大学学报(自然科学版), 2019, 47(7): 68-74.
MA Guangtong, YANG Wenjiao, WANG Zhitao, et al. Research development of superconducting maglev transportation[J]. Journal of south China university of technology(natural science edition), 2019, 47(7): 68-74.
蓝建中. 日本超导磁浮列车时速创纪录[J]. 城市轨道交通研究, 2015, 18(5): 134.
LAN Jianzhong. Japanese superconducting maglev trains set a record for speed per hour[J]. Urban mass transit, 2015, 18(5): 134.
熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177-198.
XIONG Jiayang, DENG Zigang. Research progress of high-speed maglev rail transit[J]. Journal of traffic and transportation engineering, 2021, 21(1): 177-198.
商福昆. 宫崎实验线新磁浮实验车MLU-002N[J]. 铁道机车车辆, 1995(1): 58-60.
SHANG Fukun. New maglev experimental vehicle MLU-002N for Miyazaki experimental line[J]. Railway locomotive & car, 1995(1): 58-60.
KYOTANI Y. Recent progress by JNR on maglev[J]. IEEE transactions on magnetics, 1988, 24(2): 804-807.
OHSAKI H. Review and update on maglev[R]. Karlsruhe: Cryogenics Society of Europe (CSE), 2017: 1.
王小农, 黄靖宇. 超导电动磁浮列车悬浮和导向特性[J]. 同济大学学报(自然科学版), 2022, 50(10): 1482-1489.
WANG Xiaonong, HUANG Jingyu. Levitation and guidance characteristics of superconducting electrodynamic maglev train[J]. Journal of Tongji university(natural science), 2022, 50(10): 1482-1489.
HE Jianliang, ROTE D M, COFFEY H T. Applications of the dynamic circuit theory to maglev suspension systems[J]. IEEE transactions on magnetics, 1993, 29(6): 4153-4164.
DAVEY K. Analysis of an electrodynamic maglev system[J]. IEEE transactions on magnetics, 1999, 35(5): 4259-4267.
LIM J, LEE C Y, LEE J H, et al. Design model of null-flux coil electrodynamic suspension for the hyperloop[J]. Energies, 2020, 13(19): 5075.
万尚军, 钱金根, 倪光正, 等. 电动悬浮型磁悬浮列车悬浮与导向技术剖析[J]. 中国电机工程学报, 2000(9): 23-26.
WAN Shangjun, QIAN Jin'gen, NI Guangzheng, et al. Study of the levitation and guidance technology for electrodynamic suspension maglev vehicle[J]. Proceedings of the CSEE, 2000(9): 23-26.
王志涛, 蔡尧, 龚天勇, 等. 基于场-路-运动耦合模型的超导电动悬浮列车特性研究[J]. 中国电机工程学报, 2019, 39(4): 1162-1170.
WANG Zhitao, CAI Yao, GONG Tianyong, et al. Characteristic studies of the superconducting electrodynamic suspension train with a field-circuit-motion coupled model[J]. Proceedings of the CSEE, 2019, 39(4): 1162-1170.
CAI Yao, MA Guangtong, WANG Yiyu, et al. Semianalytical calculation of superconducting electrodynamic suspension train using figure-eight-shaped ground coil[J]. IEEE transactions on applied superconductivity, 2020, 30(5): 1-9.
龚夕霞, 卢琴芬. 超导电动悬浮系统基于有限元-解析耦合算法的力特性分析[J]. 微电机, 2020, 53(9): 1-7.
GONG Xixia, LU Qinfen. Force performance analysis of superconducting EDS system by finite element-analytical coupling algorithm[J]. Micromotors, 2020, 53(9): 1-7.
SU Zhenhua, LUO Jun, MA Guangtong, et al. Fast and precise calculation of mutual inductance for electrodynamic suspension: methodology and validation[J]. IEEE transactions on industrial electronics, 2022, 69(6): 6046-6057.
CHEN Dachuan, LI Xiaofen, HUANG Xiangyu, et al. An FEM model for evaluation of force performance of high-temperature superconducting null-flux electrodynamic maglev system[J]. IEEE transactions on applied superconductivity, 2021, 31(7): 1-6.
吴定鼎, 黄欢, 袁宇航, 等. 车载超导磁体长度对电动悬浮列车悬浮特性的影响[J]. 机车电传动, 2022(4): 9-16.
WU Dingding, HUANG Huan, YUAN Yuhang, et al. Effect of onboard superconducting magnet length on the levitation characteristics of electrodynamic levitation train[J]. Electric drive for locomotives, 2022(4): 9-16.
0
Views
10
下载量
0
CSCD
0
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution