浏览全部资源
扫码关注微信
中车株洲电力机车研究所有限公司,湖南 株洲 412001
Published:10 January 2024,
Received:31 July 2023,
Revised:19 December 2023,
扫 描 看 全 文
龙腾, 王彧弋, 林军, 等. 轨道交通车载智能化应用技术发展展望[J]. 机车电传动, 2024(1): 11-21.
LONG Teng, WANG Yuyi, LIN Jun, et al. Development and prospects of intelligent technology in rail transit vehicles[J]. Electric drive for locomotives,2024(1): 11-21.
龙腾, 王彧弋, 林军, 等. 轨道交通车载智能化应用技术发展展望[J]. 机车电传动, 2024(1): 11-21. DOI:10.13890/j.issn.1000-128X.2024.01.124.
LONG Teng, WANG Yuyi, LIN Jun, et al. Development and prospects of intelligent technology in rail transit vehicles[J]. Electric drive for locomotives,2024(1): 11-21. DOI:10.13890/j.issn.1000-128X.2024.01.124.
随着感知、决策、控制、诊断等技术不断向智能化方向发展,在轨道交通领域,车载智能化应用也逐渐成为未来轨道交通发展的趋势。文章介绍了列车自动驾驶、主动防撞、基础设施检测、行为监测等车载关键技术的发展现状以及展望,这些技术的应用提高了轨道交通的运行效率和安全性。其中,列车自动驾驶技术的应用使得列车可以更加准确、高效地运行,降低了人为操作失误带来的风险;主动防撞技术的应用可以实现列车之间的自动避让,有效预防碰撞事故;基础设施检测和行为监测技术的应用可以在设备故障或者司机疲劳等情况下及时预警,减少潜在风险。随着这些技术的应用,轨道交通车载智能化将迎来更多的创新和发展,为未来轨道交通的高效、安全、智能化运营提供有力支持。
With the continuous development of technologies such as perception
decision
control
and diagnosis towards intelligence
the integration of intelligent features into vehicular applications has emerged as a prominent trend in the future development of rail transportation. This paper provides a comprehensive overview of the current status and future expectations of key onboard technologies
including automatic train operation (ATO)
active collision prevention
infrastructure detection
and driver behavior monitoring. These technologies have significantly enhanced the operational efficiency and safety of rail transportation
along with profound potential for further advancements. Specifically
the train automatic operation technology aims to achieve more accurate and efficient operation of trains
thereby significantly reducing the risks associated with human operational errors. The active collision prevention technology enables automated avoidance between trains
such effectively precluding collision accidents. Furthermore
the infrastructure detection and driver behavior monitoring technology facilitates timely warnings in cases of equipment failure or driver fatigue
ultimately reducing potential hazards. With the further application of these technologies
rail transit vehicles will witness further innovation and development based intelligence
providing robust support for efficient
safe
and intelligent operation of rail transportation in the future.
轨道交通机车自动驾驶主动防撞基础设施检测行为监测
rail transitautomatic train operationactive collision preventioninfrastructure inspectionbehavior monitoring
丁荣军, 杨卫峰, 唐军. 轨道交通装备智能化技术的研究及应用[J]. 机车电传动, 2012(5): 1-4.
DING Rongjun, YANG Weifeng, TANG Jun. Research and application of intelligentizing technology for rail traffic equipment[J]. Electric drive for locomotives, 2012(5): 1-4.
钟谱华, 张征方, 熊佳远. 一种重载列车自动驾驶操纵曲线规划方法[J]. 控制与信息技术, 2021(6): 35-42.
ZHONG Puhua, ZHANG Zhengfang, XIONG Jiayuan. A planning method of automatic driving control curve for heavy haul train[J]. Control and information technology, 2021(6): 35-42.
李程, 张征方, 沈子扬. 基于预测控制的货运机车自动驾驶技术研究[J]. 控制与信息技术, 2020(6): 8-13.
LI Cheng, ZHANG Zhengfang, SHEN Ziyang. Research on freight locomotive automatic driving based on predictive control[J]. Control and information technology, 2020(6): 8-13.
潘文波, 李程, 袁希文, 等. 面向地铁场景的激光雷达目标检测研究[J]. 机车电传动, 2022(2): 89-96.
PAN Wenbo, LI Cheng, YUAN Xiwen, et al. Research on lidar target detection for metro scene[J]. Electric drive for locomotives, 2022(2): 89-96.
GUO Yulan, WANG Hanyun, HU Qingyong, et al. Deep learning for 3D point clouds: a survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(12): 4338-4364.
潘文波, 李源征宇, 龙腾, 等. 智轨电车多传感器融合定位研究[J]. 控制与信息技术, 2022(2): 76-83.
PAN Wenbo, LI Yuanzhengyu, LONG Teng, et al. Research on multi-sensor fusion localization for autonomous-rail rapid tram[J]. Control and information technology, 2022(2): 76-83.
何华武. 高速铁路运行安全检测监测与监控技术[J]. 中国铁路, 2013(3): 1-7.
HE Huawu. High speed railway operation safety inspection and monitoring technology[J]. Chinese railways, 2013(3): 1-7.
UIC. Railway application-fixed installations-diagnosis of OCL conditions: IRS 70015:2016[S]. Paris: UIC, 2016.
CHO C J, KO H. Video-based dynamic stagger measurement of railway overhead power lines using rotation-invariant feature matching[J]. IEEE transactions on intelligent transportation systems, 2015, 16(3): 1294-1304.
LI Qingyong, REN Shengwei. A real-time visual inspection system for discrete surface defects of rail heads[J]. IEEE transactions on instrumentation and measurement, 2012, 61(8): 2189-2199.
LIU Liu, ZHOU Fuqiang, HE Yuzhu. Automated visual inspection system for bogie block key under complex freight train environment[J]. IEEE transactions on instrumentation and measurement, 2016, 65(1): 2-14.
康高强, 高仕斌, 于龙, 等. 基于深度学习的高铁接触网旋转双耳开口销钉缺失故障检测[J]. 铁道学报, 2020, 42(10): 45-51.
KANG Gaoqiang, GAO Shibin, YU Long, et al. Fault detection of missing split pins in swivel with clevis in high-speed railway catenary based on deep learning[J]. Journal of the China railway society, 2020, 42(10): 45-51.
GONZALEZ R C, WOODS R E. Digital image processing[M]. 2nd ed. Upper Saddle River: Prentice Hall, 2002.
LIU Zhigang, WANG Liyou, LI Changjiang, et al. A high-precision loose strands diagnosis approach for isoelectric line in high-speed railway[J]. IEEE transactions on industrial informatics, 2018, 14(3): 1067-1077.
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Deep transfer learning with joint adaptation networks[C]//JMLR.org. Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR.org, 2017: 2208-2217.
CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: a survey[J]. ACM computing surveys, 2009, 41(3): 1-58.
HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
ANGELETTI G, CAPUTO B, TOMMASI T. Adaptive deep learning through visual domain localization[C]//IEEE. 2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 7135-7142.
LESORT T, LOMONACO V, STOIAN A, et al. Continual learning for robotics: definition, framework, learning strategies, opportunities and challenges[EB/OL]. (2019-11-22) [2023-09-16]. https://arxiv.org/abs/1907.00182https://arxiv.org/abs/1907.00182.
KUMAR N, BERG A C, BELHUMEUR P N, et al. Attribute and simile classifiers for face verification[C]//IEEE. 2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 365-372.
KHUNPISUTH O, CHOTCHINASRI T, KOSCHAKOSAI V, et al. Driver drowsiness detection using eye-closeness detection[C]//IEEE. 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems. Naples: IEEE, 2016: 661-668.
SARADADEVI M, BAJAJ P. Driver fatigue detection using mouth and yawning analysis[J]. International journal of computer science and network security, 2008, 8(6): 183-188.
BHANDARI G M, DURGE A, BIDWAI A, et al. Yawning analysis for driver drowsiness detection[J]. International journal of research in engineering and technology, 2014, 3(2): 502-505.
张晓平, 纪佳慧, 王力, 等. 基于视频的人体异常行为识别与检测方法综述[J]. 控制与决策, 2022, 37(1): 14-27.
ZHANG Xiaoping, JI Jiahui, WANG Li, et al. Overview of video based human abnormal behavior recognition and detection methods[J]. Control and decision, 2022, 37(1): 14-27.
RAMIREZ H, VELASTIN S A, MEZA I, et al. Fall detection and activity recognition using human skeleton features[J]. IEEE access, 2021, 9: 33532-33542.
胡琼, 秦磊, 黄庆明. 基于视觉的人体动作识别综述[J]. 计算机学报, 2013, 36(12): 2512-2524.
HU Qiong, QIN Lei, HUANG Qingming. A survey on visual human action recognition[J]. Chinese journal of computers, 2013, 36(12): 2512-2524.
BERMEJO NIEVAS E, DENIZ SUAREZ O, BUENO GARCÍA G, et al. Violence detection in video using computer vision techniques[C]//Springer. Computer Analysis of Images and Patterns. Seville: Springer, 2011: 332-339.
MARTIN V, GLOTIN H, PARIS S, et al. Violence detection in video by large scale multi-scale local binary patterns dynamics[EB/OL]. (2012-10-04) [2023-11-18]. https://ceur-ws.org/Vol-927/mediaeval2012_submission_43.pdfhttps://ceur-ws.org/Vol-927/mediaeval2012_submission_43.pdf.
WANG Heng, KLÄSER A, SCHMID C, et al. Action recognition by dense trajectories[C]//IEEE. CVPR 2011. Colorado Springs: IEEE, 2011: 3169-3176.
GENG Yanyan, LIANG Ruze, LI Weizhi, et al. Learning convolutional neural network to maximize Pos@Top performance measure[EB/OL]. (2017-03-01) [2023-11-18]. https://arxiv.org/abs/1609.08417https://arxiv.org/abs/1609.08417.
JI Shuiwang, YANG Ming, YU Kai. 3D convolutional neural networks for human action recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1): 221-231.
KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//IEEE. 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1725-1732.
0
Views
58
下载量
0
CSCD
1
CNKI被引量
Publicity Resources
Related Articles
Related Author
Related Institution